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ABSTRACT

A blind (non-data aided), open loop, joint frequency off-
set and delay estimation algorithm for a linearly modulated
signal in additive stationary noise is developed by exploiting
the cyclostationarity of the signal. By considering the sam-
ple cyclic autocorrelation function of the received signal and
the probability distribution of the estimation error, a general
linear model representation of the problem is obtained from
which the parameters are estimated using a Bayesian frame-
work. The algorithm is then extended to a multiple signals
of interest scenario. The algorithm is simulated for both sin-
gle and multiple BPSK signals.

1. INTRODUCTION

Frequency offset and delay estimation is typically required
in the reception of digital communication signals. The fre-
quency of the incoming signal can differ from that of the lo-
cal oscillator frequency due to propagation, Doppler effects
and mismatch between transmitter and receiver oscillators;
and the channel delays the transmitted signal. Data aided
and non-data aided and open-loop and closed-loop solutions
have been proposed for such an estimation task [4]. In this
paper, we exploit the cyclostationary characteristic of com-
munication signals to design a non-data aided, open loop,
joint frequency offset-delay estimation algorithm for linearly
modulated signals corrupted by additive stationary noise.

Second order cyclic statistics were used in [5] to esti-
mate the frequency and delay of a known signal. A two-
dimensional cost function based on the mean squared error
between the expected and estimated cyclic autocorrelation
function was minimised to obtain the estimates. Recently
in [2], a cyclic statistics based frequency-delay estimation
algorithm was proposed for flat fading channels. This algo-
rithm was an averaged estimator, requiring the calculation of
cyclic autocorrelations at two cyclic frequencies and did not
consider the estimation error. It will give a good estimate in
a high SNR scenario and with a long symbol sequence. Sec-
ond order [6] and fourth order [3] nonlinearities have been

also used for joint frequency-delay estimation by generating
periodic components containing the synchronisation param-
eters. Our algorithm is based on the cyclic autocorrelation
vector at one cyclic frequency and considers the probability
distribution of the estimation error, leading to a general lin-
ear model representation from which we obtain frequency
and delay estimates using a Bayesian approach. Also, we
extend the algorithm to a multiple signal scenario, an issue
not addressed in the above mentioned papers.

Consider a received signal:

r(t) = As(t � � )ej2�fot + v(t) (1)

where A is the unknown constant amplitude of the signal, �
is the unknown delay which we assume is less than a symbol
period (� < T ), fo is the unknown frequency offset, v(t) is
additive stationary noise and s(t) is given by:

s(t) =
X
k

b(k)p(t� kT ) (2)

with b(k) being the information symbols and p(t) being the
signaling pulse of duration T , which has a finite second or-
der cyclic moment. (2) is a linear periodically time varying
(LPTV) system and hence s(t) is second order cyclostation-
ary.

Our aim is to estimate the frequency offset fo and the
delay � from the received signal without the aid of the data
symbols.

2. ESTIMATION ALGORITHM

We oversample the received signal (1), i.e., Ts = T=P , giv-
ing the discrete time data:

r(n) = As(n � �)ej2�fon + v(n) (3)

To obtain the cyclic autocorrelation we need to know the
set of cyclic frequencies f�g. The set of cyclic frequencies
can be obtained a priori using the statistical test based on



the Neyman-Pearson criteria as proposed in [1]. In the case
of linearly modulated signals the cyclic frequencies occur at
multiples of the symbol rate 1=T . We also make the follow-
ing assumptions:

(A1) The symbols b(k) are zero-mean, stationary, uncorre-
lated and uniformly distributed over a finite alphabet.

(A2) The additive noise v(n) is a WSS process.

(A3) The joint moments of r(n) are absolutely summable.

The cyclic autocorrelation of r(n) at the mth lag and at
cyclic frequency � = k=T ; k = 0; 1; :: can be written as:

R�
r (m) = A2e�j2���R�

s (m)e�j2�fom + R�
v (m) (4)

whereR�
s (m) is the cyclic autocorrelationof s(n) andR�

v (m)
is the cyclic autocorrelation of v(n) at cyclic frequency �.

Considering� = 1=T , since R�
v (m) = 0 for � 6= 0, we

can write:

R�
r (m) = A2e�j2���R�

s (m)e�j2�fom (5)

In practice, we would only have a finite number of sam-
ples and R�

r (m) has to be estimated from these samples:

R̂�
r (m) =

1

N

N�1X
n=0

r(n)r�(n+m)e�j2��n (6)

It can be shown [1] that under assumption (A3), R̂�
r (m)

converges in the mean square sense:

R�
r (m) = lim

N!1
EfR̂�

r (m)g (7)

and that [R̂�
r (m)�R�

r (m)] is asymptotically complex nor-
mal.

Hence for � = 1=T we can write:

R̂�
r
(m) = A2e�j2���R�

s
(m) � e�j2�fom + e(m);

m = [0; 1; ::;M ]0 (8)

where �denotes component-wise multiplication,R�
s
(m) is a

vector of calculated cyclic autocorrelation of s(n), R̂�
r
(m)

is a vector of cyclic autocorrelation estimates from the sam-
ples of r(n) and e(m) is the estimation error. M is the maxi-
mum lag for whichR�

s
(m) has a non-zero value. M should

be large enough to shape the likelihood function. R�
s
(m)

can be calculated beforehand knowing the pulse functionp(t)
and stored in memory. R̂�

r
(m) is calculated on-line using

frequency shifted versions of the received signal.
Separating the real and imaginary components:�
Refyg
Imfyg

�
=

�
Refgg Imfgg
Imfgg �Refgg

��
Refhg
Imfhg

�
(9)

+

�
Refeg
Imfeg

�

d = Gb+ n

where

h = A2e�j2��� (10)

y = [R�
r (0); R

�
r (1); ::; R

�
r (M )]0 (11)

g =

0
BBBB@

R�
s (0)

R�
s (1)e

�j2�fo

::
::

R�
s (M )e�j2�foM

1
CCCCA (12)

e = [e(0); e(1); ::; e(M )]0 (13)

The likelihood function is:

p(djb; fo;C; I) =

(2�)�N=2jC�1j exp[�(d�Gb)0C�1(d�Gb)] (14)

where C is the covariance matrix.
We assume C = �2I for computational simplicity and

thus the likelihood can be written as:

p(djb; fo; �; I) =

(2��2)�N=2 exp[�
(d�Gb)0(d�Gb)

2�2
] (15)

Using Bayes’ theorem with uniform priors for fo and b and
Jeffrey’s prior for �, the posteriorprobabilitydensity is given
by:

p(b; fo; �jd; I) =

(2��2)�N=2 exp[�
(d�Gb)0(d�Gb)

2�2
]
1

�
(16)

Since (16) is a quadratic function in the linear parameter
b, maximising the exponential with respect to b gives the
LSE estimate for b as:

b̂ =

�
A2 cos(2���)
A2 sin(2���)

�
= (G0G)�1G0d (17)

The estimate for the delay is obtained as:

�̂ =
arctan( b(2)b(1))

2��
(18)

where arctan is the four quadrant tangent. Substituting (17)
in (16) and integrating out the nuisance parameters gives:

p(fojd; I) =

(d0d� d0G(G0G)�1G0d)
�(M�2)=2p

det(G0G)
(19)

The Maximum A Posteriori (MAP) estimate for fo is ob-
tained by locating the maximum of the posterior pdf (19) us-
ing an one-dimensional optimisation scheme.

f̂o = max
fo

[p(fojd; I)] (20)



3. MULTIPLE SIGNALS

The algorithm presented in the previous section is insensi-
tive to the presence of any interfering signals provided the
interfering signals do not have the same cyclic frequency as
the signal of interest (i.e., in the case of multiple linearly mod-
ulated signals this corresponds to different pulse rates) or if
they are uncorrelated with respect to the signal of interest.
However, if we are interested in estimating the frequencies
and delays of multiple signals of distinct pulse rates, then we
can run the above algorithm in parallel with� corresponding
to the set of distinct cyclic frequencies. As far as each sig-
nal is concerned the other signals are interferers which do
not affect the cyclic autocorrelation function. Note that this
interference suppression property is not available in the con-
ventional correlation domain.

In this section we consider a more interesting scenario,
where we have multiple signals with the same pulse rate, i.e.,
the same cyclic frequency.

Consider the received signal model:

r(t) =
LX
l=1

Als(t � �l)e
j2�folt + v(t) (21)

where L is the number of signals known a-priori,Al; �l; fol
are respectively the unknown constant amplitude, unknown
delay and unknown frequency of the lth signal, v(t) is addi-
tive stationary noise and s(t) is a second order cyclostation-
ary signal.

We oversample the received signal (21), i.e., Ts = T=P ,
giving the discrete time data:

r(n) =
LX
l=1

Als(n � �l)e
j2�foln + v(n) (22)

We assume that (A4) the frequency offsets fol < 1=T ,
which is a realistic assumption. This allows us to write the
cyclic autocorrelation function of r(n) at the mth lag and at
cyclic frequency � = 1=T as:

R̂�
r
(m) =

LX
l=1

A2
l e
�j2���lR�

s
(m) � e�j2�folm + e(m);

m = 0; 1; ::;M (23)

where R�
s
(m) is the known cyclic autocorrelation of s(n),

R̂�
r
(m) is a vector of cyclic autocorrelation estimates from

the received signal r(n) and e(m) is the estimation error.
The cross correlation terms between the signals are zero un-
der assumption (A4):

Rs

(�+foa�fob)(m) = 0; a 6= b (24)

Strictly we only require:

foa � fob 6= k=T ; a 6= b; k = 0; 1; 2; :: (25)

Separating the real and imaginary components we obtain a
general linear model representation d = Gb+ n, where b
is a vector of length 2L and G is a M � 2L matrix. Using
a Bayesian approach as before, the estimate for the delay of
the lth signal is obtained as:

�̂l =
arctan( b(2l)

b(2l�1))

2��
(26)

where arctan is the four quadrant tangent.
The frequency estimates are obtained by maximising the

posterior density:

p(fojd; I) =

(d0d� d0G(G0G)�1G0d)
�(M�2L)=2

p
det(G0G)

(27)

This is a L-dimensional function and the Maximum-A-
Posteriori estimate of theL frequencies is given by the global
maximum of the posterior density. Performing a large multi-
dimensional search is very costly and we need to resort to
computationally efficient search schemes.

The special structure of the posterior density (27) can be
exploited to split up the L-dimensional search into a series
of one-dimensional searches. For the case of two signals, we
observe that the posterior density has a ridge at f1 = fo1
running parallel to the f2 axis and a ridge at f2 = fo2 run-
ning parallel to the f1 axis. Thus the maximum can be lo-
cated by first searching along one axis, f1 = 0 or f2 = 0,
to find the ridge and then a search along the ridge to find the
maximum. This is similar to the Fast Maximum Likelihood
method in [7]. When we have more than two signals an it-
erative algorithm as in [7] can be used build up the model
matrix.

4. SIMULATIONS

We simulated our algorithms, both single signal and multiple
signal cases, using BPSK signals with uncorrelated, equally
probable�1 symbols. The symbols were pulse shaped with
a raised cosine pulse (� = 0:5), truncated to 8P + 1 taps
and delayed by 4P . The transmitted sequence was corrupted
with additive white Gaussian noise (AWGN). The received
sequence was oversampled, P = 10, and the frequency and
delay were estimated. All the results were averaged over
100 trials.

Case 1 : To compare our algorithm for a single signal
scenario with that of [2], a BPSK sequence of 200 symbols
was generated and pulse shaped and corrupted with AWGN
of varying variance. The frequency offset was fixed at fo =
0:1=T and the delay at � = 0:4P . The mean squared error
(MSE) of the estimates, normalised to the symbol rate are
shown in fig. 1. ’�’ marks for our algorithm and ’4’ for that



of [2]. We observe a significant improvement in the perfor-
mance.
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Figure 1: Estimator variance for a single BPSK signal : ours
vs [2]

Case 2 : Three BPSK signals, 400 symbols long, with
the same pulse rate and with frequency offsets fo1 = 0:2=T ,
fo2 = 0:4=T , fo3 = 0:7=T and delays �1 = 0:3P , �2 =
0:5P , �3 = 0:7P were corrupted with AWGN of increasing
variance, and estimates of frequency offsets and delays were
obtained using the algorithm that was extended to a multiple
signal scenario. The signal amplitudes were 0 dB each. The
results are shown in fig. 2.
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Figure 2: Average estimator variance for three BPSK signals

Case 3 : Two BPSK signals were corrupted with AWGN.
The frequency offset of one signal was varied, fo2 = 0:2=T�
0:9=T , while fixing the other parameters at fo1 = 0:1=T; �1 =
0:4P; �2 = 0:8P . Fig.3 shows the estimates for a noise vari-
ance of 0.01 with a symbol length of 400.
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Figure 3: Estimates for two BPSK signals as the frequency
separation varies

5. CONCLUSION

We have presented a blind, open-loop, joint frequency offset-
delay estimation algorithm for linearly modulated signals in
additive stationary noise based on second order cyclic statis-
tics. This algorithm does not depend on the colour or the
distribution of the additive noise as long as the noise is a
WSS process. By considering the probability distributionof
the estimation error, a general linear model representation
of the problem is obtained from which consistent estimates
are obtained using a Bayesian approach. For a single signal
scenario, the delay is estimated as a LSE estimate and the
frequency offset via an one dimensional optimisation. For a
multiple signal scenario, under a realistic assumption about
the frequency offsets, the use of cyclic statistics allow us to
eliminate the cross correlation between the signals and the
delays are obtained as LSE estimates and the frequency off-
sets are given by a multi-dimensional optimisation. By util-
ising the special structure of the posterior probability distri-
bution, the multidimensional search can be reduced to a se-
quence of one dimensional searches.
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