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ABSTRACT

A blind (non-dataai ded), open loop, joint frequency off-
set and delay estimation algorithm for alinearly modulated
signal inadditivestationary noiseisdevel oped by exploiting
the cyclostationarity of the signal. By considering the sam-
plecyclic autocorrel ation function of thereceived signal and
the probability distribution of the estimation error, a general
linear model representation of the problem is obtained from
which the parameters are estimated using a Bayesian frame-
work. The algorithm is then extended to a multiple signals
of interest scenario. Theagorithmissimulated for both sin-
gleand multiple BPSK signals.

1. INTRODUCTION

Frequency offset and delay estimation is typically required
in the reception of digital communication signals. The fre-
guency of theincoming signal can differ from that of thelo-
cal oscillator frequency due to propagation, Doppler effects
and mismatch between transmitter and receiver oscillators;
and the channel delays the transmitted signal. Data aided
and non-dataai ded and open-loop and closed-loop solutions
have been proposed for such an estimation task [4]. In this
paper, we exploit the cyclostationary characteristic of com-
munication signals to design a non-data aided, open loop,
jointfrequency offset-delay estimationagorithmfor linearly
modulated signals corrupted by additive stationary noise.
Second order cyclic statistics were used in [5] to esti-
mate the frequency and delay of a known signal. A two-
dimensional cost function based on the mean squared error
between the expected and estimated cyclic autocorrelation
function was minimised to obtain the estimates. Recently
in [2], acyclic statistics based frequency-delay estimation
algorithm was proposed for flat fading channels. Thisalgo-
rithmwas an averaged estimator, requiring the cal cul ation of
cyclic autocorrelationsat two cyclic frequencies and did not
consider the estimation error. 1t will giveagood estimate in
ahigh SNR scenario and with along symbol sequence. Sec-
ond order [6] and fourth order [3] nonlinearities have been

also used for joint frequency-del ay estimation by generating
periodic components contai ning the synchroni sation param-
eters. Our agorithm is based on the cyclic autocorrelation
vector at one cyclic frequency and considersthe probability
distribution of the estimation error, leading to agenera lin-
ear model representation from which we obtain frequency
and delay estimates using a Bayesian approach. Also, we
extend the algorithm to a multiple signa scenario, an issue
not addressed in the above mentioned papers.
Consider areceived signd:

r(t) = As(t — T)eﬂ”f"t + () Q)

where A isthe unknown constant amplitude of the signal, =
istheunknown delay which we assumeislessthan asymbol
period (7 < T'), f, isthe unknown frequency offset, v(¢) is
additive stationary noise and s(t) is given by:

s(t) =Y b(k)p(t — kT) 2

with b(k) being the information symbols and p(¢) being the
signaling pulse of duration ", which has a finite second or-
der cyclic moment. (2) isalinear periodicaly time varying
(LPTV) system and hence s(t) is second order cyclostation-
ary.

Our aim is to estimate the frequency offset f, and the
delay = from the received signal without the aid of the data
symbols.

2. ESTIMATION ALGORITHM

Weoversampletherecelved signa (1),i.e, Ts = T/ P, giv-
ing the discrete time data:

r(n) = As(n — €)ed 7™ 4 y(n) (3)

To obtainthe cyclic autocorrel ationwe need to know the
set of cyclic frequencies {«}. The set of cyclic frequencies
can be obtained a priori using the statistical test based on



the Neyman-Pearson criteriaas proposed in [1]. In the case
of linearly modul ated signal sthe cyclic frequencies occur at
multiplesof thesymbol rate 1/7". We aso make the follow-
ing assumptions:

(A1) Thesymbolsb(k) are zero-mean, stationary, uncorre-
lated and uniformly distributed over afinite a phabet.

(A2) The additivenoisev(n) isa WSS process.
(A3) Thejoint moments of »(n) are absolutely summable.

The cyclic autocorrelation of r(n) at the m'” lag and at
cyclicfrequency o« = k/T; k = 0, 1, .. can be written as:

RE (m) = A% RE (m)e 27T 4 R2 () ()

where RY (m) isthecyclicautocorrelationof s(n) and Ry (m)
isthe cyclic autocorrelation of v(n) at cyclic frequency «.

Consideringa = 1/7T', since R (m) = 0 for o« # 0, we
can write:

RE(m) = A%emIC R (m)e=i2nhom (g

In practice, we would only have afinite number of sam-
plesand R%(m) has to be estimated from these samples:

. 1 V=t .
RY(m) = N Z r(n)r* (n 4+ m)e I 2mon (6)
n=0

It can be shown [1] that under assumption (A3), Rff(m)
converges in the mean square sense:

Ri(m) = lim E{R}(m)} ()

and that [R%(m) — R%(m)] isasymptotically complex nor-
mal.
Hence for o« = 1/7" we can write:

Ry(m) = A% T2 RE (m) - 71 4 o)
m=1[0,1,.,M] (8)

where - denotescomponent-wisemultiplication, RS (m) isa
vector of calculated cydlic autocorrelation of s(n), R (m)
isavector of cyclic autocorrel ation estimates from the sam-
plesof r(n) ande(m) istheestimationerror. M isthe maxi-
mum lag for which RS (m) hasanon-zerovalue. M/ should
be large enough to shape the likelihood function. RZ(m)
can becal cul ated beforehand knowing the pul sefunction p(t)
and stored in memory. R¢(m) is calculated on-line using
frequency shifted versions of the received signal.
Separating thereal and imaginary components:

(i) = (ie) ZRleh) (lib)e

(el
Gb+n

where
h = AZe—jZﬂ'oze (10)
y = [R(0), R*(1), .., R*(M)]’ (11)
RE(0)
R (1)em72mte
g= . 12)

R (M)e=3271:

e=1[e(0),e(l),...,e(M)] (13)
Thelikelihood functionis:
p(d|b,fO,C,I) =
(27)~N2|C Y exp[—(d — Gb)'C™}(d — Gb)] (14)

where C isthe covariance matrix.
We assume C = 21 for computational simplicity and
thusthe likelihood can be written as:

p(dlb, fo,0,1) =

(27‘,0,2)—N/2 exp[— (d — Gb)/(d — Gb)

@)

Using Bayes' theorem with uniform priorsfor f, and b and
Jeffrey’spriorfor o, the posterior probability density isgiven
by:

p(b, fo,0ld, I) =

(271'02)_N/2 exp[— (

d-Gb/(d-Gb),1 o

202
Since (16) isaquadratic functionin the linear parameter
b, maximising the exponential with respect to b gives the
L SE estimate for b as:
s (AZcos(27a€)\ ] e
b= <A2 sin(?ﬂ'ae)) =(E¢'G)7 G (17)
The estimate for the delay is obtained as:
arctan b(2)
¢ — M (18)
2w
where arctan isthe four quadrant tangent. Substituting (17)

in (16) and integrating out the nuisance parameters gives:
p(fold, I) =
(d'd - d'G(G'G)"1G'd)
det(G'G)

The Maximum A Posteriori (MAP) estimate for f, is ob-
tained by | ocating the maximum of the posterior pdf (19) us-
ing an one-dimensional optimisation scheme.

fo= max(p(fo|d, )] (20)

~(M-2)/2

(19)



3. MULTIPLE SIGNALS

The algorithm presented in the previous section is insensi-
tive to the presence of any interfering signals provided the
interfering signal s do not have the same cyclic frequency as
thesignal of interest (i.e., inthecase of multiplelinearly mod-
ulated signal s this corresponds to different pulse rates) or if
they are uncorrelated with respect to the signal of interest.
However, if we are interested in estimating the frequencies
and delays of multiplesignalsof distinct pulserates, thenwe
can runtheabove algorithmin parallel with « corresponding
to the set of distinct cyclic frequencies. Asfar as each sig-
nal is concerned the other signals are interferers which do
not affect the cyclic autocorrelation function. Note that this
interference suppression property isnot availablein thecon-
ventional correlation domain.

In this section we consider a more interesting scenario,
wherewehave multiplesignal swiththesame pulserate, i.e.,
the same cyclic frequency.

Consider the received signa model:

L
r(t) =3 Aus(t — m)el Tt 4 o(1) (21)
=1
where L isthe number of signalsknown a-priori, A;, 71, for
are respectively the unknown constant amplitude, unknown
delay and unknown frequency of the!** signal, v(t) isaddi-
tive stationary noiseand s(¢) isasecond order cyclostation-
ary signal.
Weoversamplethereceived signd (21),i.e, 7, = T/P,
giving the discrete time data:

L
r(n) = ZAls(n — )&l TmIan 4 y(n) (22)
=1
We assume that (A4) the frequency offsets f,; < 1/7,
which isaredlistic assumption. This allows usto writethe
cyclic autocorrelation function of r(n) at the m** lag and at
cyclic frequency o« = 1/T as.

L
Rji(m) =) AP P ORE (m) - e TP 4 e(m);
=1
m=0,1,..,M (23)

where R¢'(m) isthe known cyclic autocorrelation of s(n),
R2(m) isavector of cyclic autocorrelation estimates from
the received signal r(n) and e(m) is the estimation error.
The cross correl ation terms between the signalsare zero un-
der assumption (A4):

Rs(a‘i'f”_f”b)(m) =0; a#b (24)
Strictly we only require:
Joa — foo k)T, a#b, k=012 . (25)

Separating the real and imaginary components we obtain a
genera linear model representationd = Gb + n, whereb
isavector of length2/ and G isa M x 2L matrix. Using
aBayesian approach as before, the estimate for the delay of
the{** signal is obtained as:
b(21
= arctan(%) 26)
2w

where arctan isthe four quadrant tangent.

Thefrequency estimates are obtai ned by maximising the
posterior density:

p(fold, I) =
(d'd — d'G(G/G)~1G'd)
1 (G'G)

—(M=-2L)/2

(27)

ThisisaL-dimensiona function and the Maximum-A-
Posteriori estimateof the L. frequenciesisgiven by theglobal
maximum of the posterior density. Performing alargemulti-
dimensional search is very costly and we need to resort to
computationally efficient search schemes.

The specia structure of the posterior density (27) can be
exploited to split up the L-dimensional search into a series
of one-dimensional searches. For the case of two signal's, we
observe that the posterior density has aridgeat f1 = fo1
running parallel to the f» axisand aridgeat fo = f,2 run-
ning paralle to the f; axis. Thus the maximum can be lo-
cated by first searching along one axis, f1 = O or fo = 0,
to find the ridge and then a search along theridge to find the
maximum. Thisissimilar to the Fast Maximum Likelihood
method in [7]. When we have more than two signals an it-
erative algorithm asin [7] can be used build up the model
matrix.

4. SIMULATIONS

Wesimulated our algorithms, both singlesignal and multiple
signal cases, using BPSK signalswith uncorrelated, equally
probable 1 symbols. The symbolswere pul se shaped with
araised cosine pulse (¢« = 0.5), truncated to 8P + 1 taps
and delayed by 4 P. Thetransmitted sequence was corrupted
with additive white Gaussian noise (AWGN). The received
sequence was oversampled, P = 10, and the frequency and
delay were estimated. All the results were averaged over
100trids.

Case 1 : To compare our agorithm for a single signa
scenario with that of [2], a BPSK sequence of 200 symbols
was generated and pul se shaped and corrupted with AWGN
of varying variance. The frequency offset wasfixed at f, =
0.1/T and thedelay a = = 0.4P. The mean squared error
(MSE) of the estimates, normalised to the symbol rate are
showninfig. 1. "o’ marksfor our algorithmand’ A’ for that



of [2]. We observe a significant improvement in the perfor-
mance.
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Figure 1: Estimator variancefor asingleBPSK signa : ours
vs[2]

Case 2 : Three BPSK signads, 400 symbols long, with
the same pulserate and with frequency offsets f,; = 0.2/7,
for = 0.4)T, f,3 = 0.7/T andddlays 7, = 0.3P, 7o =
0.5P, 3 = 0.7P were corrupted with AWGN of increasing
variance, and estimates of frequency offsetsand delayswere
obtai ned using the algorithm that was extended to amultiple
signal scenario. Thesignal amplitudeswere 0 dB each. The
resultsare showninfig. 2.

(a) Frequency (b) Delay

10%

MSE (feT)
MSE (delP)

S

Se-
e - _

s io is 0 s o i 20
1/Noise Variance (dB) 1/Noise Variance (dB)

Figure2: Averageestimator variancefor threeBPSK signals

Case 3: Two BPSK signalswerecorrupted with AWGN.
Thefrequency offset of onesigna wasvaried, f,» = 0.2/T—
0.9/T,whilefixingtheother parametersat f,1 = 0.1/7, 1 =
0.4P, 5 = 0.8 P. Fig.3 showsthe estimatesfor anoisevari-
ance of 0.01 with asymbol length of 400.
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Figure 3: Estimates for two BPSK signals as the frequency
separation varies

5. CONCLUSION

We have presented ablind, open-loop, joint frequency off set-
delay estimation algorithmfor linearly modulated signalsin
additivestationary noise based on second order cyclic statis-
tics. This algorithm does not depend on the colour or the
distribution of the additive noise as long as the noise is a
WSS process. By considering the probability distribution of
the estimation error, a generd linear model representation
of the problem is obtained from which consistent estimates
are obtained using a Bayesian approach. For asingle signal
scenario, the delay is estimated as a LSE estimate and the
frequency offset via an one dimensional optimisation. For a
multiple signal scenario, under arealistic assumption about
the frequency offsets, the use of cyclic statisticsallow usto
eliminate the cross correlation between the signals and the
delays are obtained as L SE estimates and the frequency off-
sets are given by amulti-dimensional optimisation. By util-
ising the special structure of the posterior probability distri-
bution, the multidimensional search can be reduced to a se-
guence of one dimensional searches.
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