
A FRAMEWORK FOR THE GRAPHICAL SPECIFICATION AND EXECUTION
OF COMPLEX SIGNAL PROCESSING APPLICATIONS

A. Sicheneder, A. Bender, E. Fuchs, R. Mandl, B. Sick

University of Passau
Faculty for Mathematics and Computer Science

Innstrasse 33, 94032 Passau (Germany)

ABSTRACT

A framework with a tool-supported high-level specification tech-
nique is very important for the development of complex signal pro-
cessing applications containing software-intensive parts (e.g. hy-
brid systems in automated production processes) in order to pro-
vide safe and reliable systems. In this paper we present the concept
of a framework, which is an object-oriented CASE-tool offering a
graphical specification ability to model and validate a given ap-
plication and to control its execution. A variety of people having
different programming skills is able to use this visual specifica-
tion technique effectively. Especially users not being interested
in implementation details can specify their application on a high
abstraction level by connecting reusable and reliable components
(modules representing basic algorithms). As a result, complex sig-
nal graphs representing the dataflow between the modules are cre-
ated. The tool supports this software specification technique by
automatic type checking for the connections between modules and
by changeable module parameters. On the other hand it is easy for
software engineers to integrate additional signal processing algo-
rithms into the framework thus building suitable module libraries
without considering a specific high-level application.

1. INTRODUCTION

Today’s industrial production processes are distinguished by in-
creasing automation to improve labour’s working place on the one
hand and enterprise’s productivity and, therefore, competition ad-
vantages on the other hand. By means of automation high-quality
products can be produced low-priced and rapidly, but computer-
aided specification of automated, matured and reliable industrial
production processes is often difficult and lengthy [4]. The pro-
posed framework is a CASE-tool for the software specification of
systems solving complex signal processing applications and for
the exectution of the software realization to observe and control
technical processes.

Who is developing which kind of signal processing algo-
rithms?Application engineerswant to focus on their specific sig-
nal processing problem and do not want to have a hard time with
implementation details, programming language features, complex
data structures and so on. This group has a lot of experience in the
specific field of applications. Therefore they are able to propose
an appropriate solution of the actual problem by analogy to previ-
ous solutions with different parameters or small changes or exten-
sions. For the development on a high abstraction level, this kind of
user needs a set of parameterized basic components, which may be
composed to form a complex algorithm. Since this abstract com-
position of a specification should be as simple as possible, such

a development of an algorithm should be supported with a graph-
ical user interface (GUI). The GUI of the framework provides a
graphical high-level language (HLL) programming facility.

Developersof complicated signal processing algorithms or
software engineerson the other hand are familiar with the spe-
cific problems of algorithm and software development on a lower
abstraction level. This group of users wants to implement basic
components with respect to modularity, numerical stability, timing
aspects and so on. Therefore these people need a flexible and easy
maintainable object-oriented framework, which allows an integra-
tion of high sophisticated basic algorithms without changes of the
framework itself. Graphical visualization modules serve as as a
kind of HLL-debugger to test and validate new modules.

After implementing and testing specific signal processing ap-
plications, it should be possible to use the framework as well for
the actual usage, that is for the execution of the complex algorithm
f.i. in the monitoring of industrial production processes. This re-
quires not only a tool for the offline analysis of previously recorded
data sets but also a tool for online supervision and control. Hence a
customizable front-end with hierachically regulated access to crit-
ical components for different user groups is needed.

In the following we present a framework which supports the
described separation of abstraction levels of software development
for signal processing applications. In section 2 the main compo-
nents are introduced; the underlying data model is described in
section 3 followed by the runtime control of the framework in sec-
tion 4. A comparison with related tools (section 5) and a summary
with the further developments conclude the paper.

2. COMPONENTS OF THE FRAMEWORK

Figure 1 shows the main components of the framework: thede-
velopment environmentwith the graphical user interface and the
module libraries, theruntime systemwith different kinds of inter-
faces and theruntime control.

Complex applications are specified by the application engineer
in the GUI in a graphical way as described later in this section.
For this reason appropriate parameterized modules are selected
from the module libraries and connected to software prototypes
which can be tested by means of the runtime control. The devel-
opment environment supports the user with a compatibility check
(’type-checking’ facility). Special modules provide interfaces to
files, database systems, graphical instruments, visualization tools,
A/D- or D/A-converters, computer networks etc. The main task of
the runtime control is to supervise the execution of complex algo-
rithms.

As mentioned before, the graphical representation of complex



Figure 1: Components of the framework

algorithms abstracts from the module implementation, is clear and
easy to understand, and allows an efficient fault detection. Within
the GUI, boxes with ports are connected using directed edges (see
figure 2). The result is a directed graph which may contain cy-

Figure 2: Different abstraction levels with their objects and actions

cles. Nodes without predecessors represent data sources (inputs),
nodes without sucessors data outputs and other nodes parameter-
ized basic algorithms. The edges in the graph describe the dataflow
between modules. By selecting a module, an instance of the algo-
rithm is created and by wiring two modules a type-check is ex-
ecuted and an instance of a communication medium is created
(e.g. a datastream). Modules and communication media are im-
plemented in C++.

Some specific features are worth to be mentioned in detail:

� The icon-based notation facilitates the specification of very
large programs through a hierarchical decomposition by
macros. Macros and an orthographical wiring of the edges
between the module ports make the solution clearer and
help to avoid design bugs.

� Cycles within the graphical representation allow the specif-
cation of adaptive algorithms.

� The runtime system enables multiple asynchronous data
sources, the parallel or distributed (over a network) execu-
tion of several signal graphs and it is responsible for the
detection of the violation of (weak) realtime conditions.

The implementation of new modules is supported by templates
which help to collect algorithms into a library in order to use them
in the framework. Thus, a software engineer is only responsible
for the algorithm’s I/O-behaviour without integration aspects. In
addition he has not to consider implementation details. Hence the
system specification time is significantly accelerated and known
solutions can easily be adjusted to similar applications. Expensive
error tracing within the whole graph is dramatically reduced due
to the modular character of the specification and special display
modules within the runtime system. Using graphical specification
techniques the documentation of the solution is simplified, because
it suffices to describe the (high-level) graphical representation of
the algorithm.
The application engineer can use graphical instruments (e.g. con-
trollers and switches) and visualization modules to build a graph-
ical front-end which is understandable and usable by an operator.
In order to avoid undesirable usage of the GUI, editing functions
can be blocked hierarchically for different user groups.

3. DATA MODEL

Besides the measured or simulated data to be processed by the
signal graph, the framework allows another kind of data within
a signal graph, namely parameter data as inputs to modules. This
feature allows dynamic changes of module parameters, which may
have been determined from previous computations. Generally, pa-
rameter data are not distinguished from signal data by the frame-
work; however, it is a module’s task to ensure the correct interpre-
tation of the data received at a parameter port. All the data flowing
within a signal graph are processed blockwise due to the following
benefits:

� Processing a block of data consisting of several values re-
duces the communication effort.

� Sometimes input data are already block-oriented (e.g. sig-
nal data from A/D-converters are stored in a buffer and
transfered as a block (of data) for further processing).

� If the data to be processed are coming from a sensor record-
ing different objects (e.g. quality control in production pro-
cesses), the data recorded between two objects may be
omitted; therefore the measured data ofoneobject may be
gathered inoneblock, thus leading to a data reduction on
the one hand and to a logical grouping of data on the other.

� Several algorithms (e.g. FFT or approximation algorithms),
are not meaningful on single values; therefore this kind of
algorithm can easily be served with blocks of data having
the amount of values they need for useful processing (e.g.
powers of 2 for FFTs).



The problem of finding appropriate block lengths is often a trade-
off between the overall execution time of the algorithm (long
blocks to reduce the communication overhead) or fast reactions
(short blocks).

Blocks are organized hierarchically in two levels (cf. figure
3). A superblockrepresents a set of data which belong together

Figure 3: The data model

semantically (e.g. measured data of a single object). A superblock
consists of one or more blocks, each containing a sequence of sev-
eral single values. Additional meta-information is provided for
every superblock (f.i. sample frequency, time stamps, unit, name
of the signal), which is valid for all blocks within a superblock.
This meta-information is used during the execution of the signal
graph f.i. to perform conversions of physical units or to process
correctly sensor data sampled with different sampling rates.

Figure 3 shows that the supported data types are also organized
hierarchically in two levels: thebasic data typedescribes the data
format of the values in the blocks and theinterpretation data type
describes the context of the data. Basic data types are elementary
types (double, int, char etc.), matrices, records, a special type for
user-defined strucures, polymorphic types and references between
types at different module ports. A type “all” is used to process
all possible data types. Interpretation data types inform the user
about the context of the signal (“signal in time domain”, “picture
in xy-format”). Only basic data types are examined in the compat-
ibility check executed whenever two modules are connected in the
GUI (’type-checking’). Interpretation data type violations produce
warnings without stopping the specification step.

4. RUNTIME CONTROL

The runtime control is the central component of the framework
(see figure 1). The execution of complex algorithms (from the
module libraries) has to be controlled in a block-oriented and
dataflow-driven manner with respect to their priority [5]. A static
processing order depending on the graph’s structure does not fulfill
this task, because control data within the graph often disable sub-
graphs (e.g. demultiplexers). Another reason is a possible cyclic
processing order of subgraphs causing multiple execution of mod-
ules in succession. Therefore the processing order has to be dy-
namic (online computed); it is based on the status of a module
called “ready for execution” [6]. A module is ready for execution,
if all the required information for the processing of the underlying
algorithm is available, i.e. all mandatory input ports are filled with

sufficient data. Altogether the framework distinguishes six mod-
ule states:instantiated, initialized, ready for execution, not ready
for execution, executingandterminated. Figure 4 shows all possi-
ble state transitions of the modules which are caused either by the
modules or by the runtime control.

Figure 4: State transitions of the modules

The runtime control algorithm is based on these module states
and consists of four phases (cf. figure 5):

Figure 5: Algorithm of the runtime control

� Instances of modules and the communication media are
generated my means of the module libraries in the instanti-
ation phase. In addition, the values specified in the signal
graph are assigned to parameters and macros are replaced
by subgraphs.

� Within the initialization phase specific initiate actions like
memory allocation are performed. Furthermore this phase
builds a list containing all source modules with respect to
the module’s priority. External applications (e.g. a filter
specification tool for FIR or IIR filters) can be executed for
initialization purposes.

� The execution phase is divided into two subphases: first all
the source modules, which are ready for execution, process
their corresponding algorithm; after each execution of a
module, the subsequent modules are checked whether they
are ready for execution, and if so, they are inserted into a
waiting list sorted by the modules’ priority. A module is
removed from the source module list if the module looses
the feature “source”, i.e. it does not produce data anymore.
In the second subphase, the modules in the waiting list are
processed according to their priority. The generated out-
put is passed to the subsequent modules and if one of these
becomes ready for execution, it is inserted into the waiting



list with respect to its priority. The module, who’s algo-
rithm was executed, is removed from the waiting list.
This alternate processing of source module list and waiting
list is repeated until the source module list is empty. The
processing is also stopped by an explicit request of a mod-
ule to end the execution, by an external user request or after
a runtime error.

� The termination phase, which is executed in any possible
case of termination, closes data files, frees memory etc.
Again it is possible to call external applications, e.g. tools
for offline visualization of processed data.

5. RELATED TOOLS: THE STATE OF THE ART

Graphical specification techniques are well known in the area of
control engineering, measurement technology and signal or image
processing. Although there are various commercial products deal-
ing with “visual programming”, the presented framework offers a
lot of advantages. Comparing related tools the following assess-
ment criteria should be used:

� Considering the GUI, it is important how the tools support
the specification process. Particularly the hierarchical de-
composition facilities, the possibility to use control struc-
tures (e.g. loops) and the debugging support should be ex-
amined. Type-checking of connections should be carried
out during development and not at runtime. Another crite-
rion is a clear representation and an intuitive way of using
the tool (look-and-feel).

� Another major criterion is the size of the module libraries
and especially the simplicity to insert new modules.

� Looking at the data-types, it has to be examined which
types are supported and if new types can be introduced and
validated without changing the runtime environment.

� It should be allowed to use multiple (eventually asyn-
ronous) data sources with different sampling rates. Block
sizes should be adjustable for each connection individually.

� To assess the runtime control the possibility to process cy-
cles within the signal graph has to be investigated. In ad-
dition it is necessary to ensure a correct data synchroniza-
tion of the data which are coming from different data paths
(subgraphs). Other criteria are the ability to process sev-
eral signal graphs in parallel and to ensure the observance
of (weak) real-time conditions.

Following [7], some of the most popular software products in mea-
surement technologies like National Instruments’LabView [3],
Hewlett Packard’sHP Vee, DIAdem from Gfs mbH [2], and in
the area of image processing the toolKhoros Pro[1] from Khoral
Research Inc. have been investigated.

As a result, it can be stated that particularly different sampling
rates and cycles within a signal graph are supported by only a few
tools. Other problems for most of these tools are the requirements
for real-time execution (actions within the GUI often interfere with
the runtime control) and the automatic type-checking during the
specification process. The framework presented in this paper is
the only tool which fulfills all the mentioned criteria. Therefore it
can be used in nearby all applications, even if the solution requires
e.g. very specific data-types or a cyclic specification.

6. CONCLUSION AND FUTURE DEVELOPMENTS

The presented framework with its graphical specification ability
leads to considerable economic benefits and fulfills the require-
ments of different user profiles in the following way:

� Signal processing applications can be described, solved and
documented in a single working cycle.

� Even very complex applications are understandable and
known solutions can easily be adjusted for reuse in new ap-
plications.

� Well tested and extendable module libraries are provided;
furthermore new libraries can be created and integrated into
the framework on demand by software experts.

� The editing of signal graphs can be disabled to preserve the
system from unauthorized use f.i. in a controlling applica-
tion.

� Interfaces to databases or networks can be used to analyse
data off-line.

� Several mechanisms help to recover and avoid bugs already
in an early stage of the specification phase.

Up to now, the framework has been used in several industrial appli-
cations (e.g. online measuring of thin metal foils) and in different
research projects at the University of Passau (e.g. tool condition
monitoring in turning [8]). A demo version of the tool (working
on a PC under Windows95/NT) can be obtained via anonymous
ftp from ftp://ftp.uni-passau.de/pub/local/iconnect/files. Our fu-
ture work deals with the extension of the libraries f.i. by image
processing algorithms. A new version working with a real-time
operating system is aspired.

7. REFERENCES
[1] D. Frieauff; Kraftpaket-Bildverarbeitung mit Khoros 2.1;

In: iX- Magazin für professionelle Informationsverarbei-
tung, May, 1997

[2] Gfs mbH; Informationen zu DIAdem;Aachen, 1996
[3] R. Jamal, H. Pichlik; LabView–Programmiersprache der

vierten Generation, Prentice Hall, 1997
[4] J. Kodosky, J. MacCrisken, G. Rymar;Visual Programming

Using Structured Data Flow;In: Proceedings of the 1991
IEEE Workshop on Visual Languages, Kobe, 1991

[5] H. Nömmer;Spezifikation und Implementierung einer Ent-
wicklungsumgebung f¨ur Signalverarbeitungsalgorithmen mit
Ablaufsteuerung zur datenflußgetriebenen Bearbeitung auf
der Basis parametrisierter Module;diploma thesis; Univer-
sity of Passau, 1997

[6] H. Nömmer, E. Fuchs, B. Sick, R. Mandl;Entwicklung und
Ablauf objekt-orientierter Echtzeitsoftware auf der Basis pa-
rametrisierter Algorithmenmodule;In: Echtzeit97, Wiesba-
den, 1997

[7] P.G. Schreier;Users adopt new technologies, return to fami-
liar suppliers; In: Personal Engineering, January, 1997

[8] B. Sick; Monitoring the Wear of Cutting Tools in CNC-
Lathes with Artificial Neural Networks;In: Proceedings of
the 1997 International Conference on Acoustics, Speech and
Signal Processing, vol. 4, 1997


