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ABSTRACT A detailed description of metal cutting processes is given for

o example in [12]. Modern NC-lathes usually provide tools with
Wear monitoring systems often use neural networks for a sensor,

fusi ith multiole input patt Svst ¢ " throw-away inserts attached on a rotatable turret (see fig. 1, left
usion with muttip’e input patterns. Systems for-a continuous on- side). In this paper, results are given for cylindrical turning pro-
line supervision of wear have to process pattern sequences. There

f i | networks h b - tigated in th t(Eesses, the most frequently used process type (see fig. 1, right
ore recurrent neural networks have been investigated in the pas side). The wear of an insert can be classified into different types
However, in most cases where only noisy input or even noisy out-

t patt ilable f isod | . ) e.g. fractures, diffusion, erosion or abrasion) or manifestations
put paliérns are available for a SUpervised leaming, SUCCESS IS No e.g. crater wear or flank wear) [12]. The parametar describ-

Lor:?cotrr?lng. Thatis, reCItJrreg:,n(T(tworks dor)tperfltjrm notlceatzl_y ing the width of wear land at the major flank mainly caused by
etier than non-recurrent networks processing only the current In-gp aqi0n s usually considered as an expressive quantity for the

put tﬁatts rn_hkefmultllaylt_er p;_erceptronsl. Thlsl_papter Idemonstrat(_esovera” wear state of an insert (see fig. 2). Values up tonzi6
on the basis of an application example (online tool wear moni- occured in our experiments.

toring in turning) that results can be improved significantly with
special non-recurrent feedforward networks. The approach uses
time-delay neural networks which consider the position of a sin-
gle pattern in a pattern sequence by means of delay elements at COTner

the synapses. In the mentioned application example, the average
error in the estimation of a characteristic wear parameter could be

reduced by about 24.2% compared with multilayer perceptrons.

1. INTRODUCTION

Online tool monitoring in turning has to deal with the detection of
collisions, the identification of tool breakage and the determination
of atool's wear. The latter task is the most difficult in this area, but ) o )

the possible economic advantages are important: on the one hand Figure 2: Definition of the wear parameterw

x . b -

tool costs can be reduced with a good exploitation of the tool’s ) o
lifetime and on the other hand products with a higher surface qual- ~ Neural Networks used for a continuous supervision of wear

ity can be produced exchanging worn tools in time. Without using have to process pattern sequences. Therefore recurrent networks
monitoring systems, tools have to be exchanged precautionary de-have been investigated by some authors (see e.g. [3, 5, 15]). How-
pending on the operator’s observations and experience. Commer€ver, in most cases where only noisy input or even noisy out-
cial systems have some serious disadvantages like causing fals@ut patterns are available for a supervised learning, success is not
alarms and many reactions not being transparent to the operatorforthcoming. That is, recurrent networks don’t perform noticeably
Scientific approaches use neural networks, fuzzy systems or combetter than non-recurrent networks processing only the current in-
binations of both (see e.g. [1, 3, 4, 5, 6, 7, 10, 15, 17]). However, put pattern like multilayer perceptrons. This paper shows how
due to insufficient generalization capabilities or simply a lack of the continuous estimation of the wear parameter can be im-
precision even promising methods are not marketable up to now. proved significantly using special non-recurrent feedforward net-
works which consider the position of a single pattern in a pattern
major flank tool cut direction sequence by means of delay elements at the synapses. Comparable
(not visible) holder /_\ / investigation are not known (the 'time-delay networks’ used in [3]
i

major feed are special recurrent networks).
Cuttlng irection

edge

2. INPUT AND OUTPUT PARAMETERS

' cutting force £ Signals from sensors in machine tools are dis_,turbed for_many. rea-
szmg . feed force F sons: outbreaks at cutting edges, chatter (i.e. self-exited vibra-
edge minorflank  meert - resultant force £ Passive force A tions), sensor nonlinearity, noise of digitizers etc. Only by means

of a multisensor data fusion technology it is possible to deter-
Figure 1: Tool holder with insert and cylindrical turning process  mine the tool’s wear (although there are additional disturbances



e.g. in form of crosstalk effects between sensor channels). Theresshown — on the assumption of certain start conditions for a pat-
fore three sensor elements (piezo-electric) for the measurement ofern sequence — to be equivalent to multilayer perceptrons with
forces in the three orthogonal directions have been used (samplinga sliding window (MLP-sw) [18]. The mentioned subclass of
rate 10k H z). With this sensor system, a large number of experi- TDNNs uses an internal representation of the temporal informa-
mental cylindrical turning processes with more than 30 inserts hastion, whereas the MLP-sw networks need input patterns which
been carried out. The wear parameter has been determined perihave been delayed externally.
odically by means of a microscope. It must be noticed, that
could be determined with a precision of aboyt/a only and that node M time .
a removal of the insert in order to measurey can noticeably delays Weignts
disturb any of the three forces in the following cut. Five static _,|
and dynamic process parameters (type of the insert (coating and
substrate), depth of cut, feed rate, cutting speed, workpiece diame----------- node i
ter) have been varied in these experiments. Other parameters,e.g. \\ /™ -\ propagation
those which describe the tool geometry (corner radius, clearence
and cutting angle, cutting edge inclination etc.) or the workpiece
material (steel Ck45), have been identical in all experiments. ) :
Output parameteof the neural network is the width of wear = '—=1 " : Z - A L
land ww; input parametersare the average values of the three
forces in a certain short time window. Before computing these
inputs, the force signals are aligned with respect to a force model. ----------
For this reason, each measured force value is divided by a correc- afﬁtévc?it(')?]n
tion factor which has been derived from a physical / mathematical
model of machining processes with defined cutting edges origi-
nally developed by KeENnzLE, VICTOR et al. (see e.g. [9]). Com-

—

pared with neural networks using 'non-aligned’ force signals and LAYER X Wiio LAYER x+1
process parameters as additional inputs, the precision of the es- Figure 3: Time-delay neural networks

timation could be improved by about 15.8% with pre-processed

forces only [14]. Networks with one hidden layer (12 nodes, fully connected)

_The problem is now to find a relationship between extremely paye peen trained with the resilient backpropagation (RPROP) su-
noisy input (?ata (see above) and output data which also can b&yeryised learning algorithm (batch learning, 50000 epochs) [11].
cglleo_l ‘noisy’, becausew describes _the overall wear in a quite  The activation function has been the non-linear sigmoid activation
simplified way and cannot be determined exactly. However, basedgnction. The experiments in the following section compare MLP,
on a sufficient number of training patterns, neural networks are TpNN and MLP-sw networks with different delays. In previous
able to ignore disturbed or noisy information, to detect fundamen- investigations it has been shown that MLPs perform better than

tal interdependencies and to approximate a sought non-linear funC'CIassifying SOMs, FuzzyARTMAPs and NEFCLASS networks
tion (see e.g. [18]). [13]. ’

3. NEURAL NETWORK PARADIGMS, STRUCTURE

AND TRAINING
Time-delay neural networks (TDNN) are non-recurrent networks ]:I(—)Or zli:zs:r?iith?t%?r?iire;lIzg?tzrr]ncsaﬁg\tjgngeoefr? E:rsrlrr:egrggt\\lyv(i)trr:(,rrezsulftlf
which use more than one connection between two nodes in succes; 9 9 p P

sive layers [16, 8. Each connecton i able o delay the propaga- ST VU™ PETE B AREIOC) BECL S S
tion of values and has its own weight (see fig. 3, a delay element Y P 9 g

D ceays s nput by x e steps). Thersiore the mputs 1o & 'S0 Ialzed vieghs, each experinent has e epeatc
node consist of the outputs of previous nodes not only during the ; 9 P

current time steg, but during some previous time steps as well tions and 'average’ to the set of test patterns in one experiment),

(usually but not necessarily a time sequence without gaps which is'_the standard deviation divided by this mean average error, the min-

f : : imum and maximum average error and the median of the 25 aver-
mostly identical for all connections between two layers of nodes, 9

e.g.t,t —1,...,t — N). The output (or activation) of a nodes agelterrorstrg)ave t;_eer;dfhtetrrtr;]lnetd.t ft bel to th hi
consequently given by must be noticed, that the test patterns belong to three chip-

ping experiments with combinations of process parameters which
lie in an area of the paramenter space covered quite well with chip-

M N
yi(t) = A (Z Zy“ (t—b) - wa b> 7 ping experiments. For the available data this measure turned out

4. RESULTS

to be necessary as a result of the uneven and sparse distribution of
parameter combinations in the parameter space. That's why results
wherey; (¢) is the output of nodé at timet, w, i, is the weight of for test patterns are better than results for training patterns. How-

a=1 b=0

a connection between nodein layerz andi in layerz 4+ 1 with ever, the relative improvements with different network paradigms

time delayb, and A is an activation function. and structures are obvious and the conclusions are valid in any
With the given definition multilayer perceptrons (MLP) are a way.

subclass of TDNNs without 'real’ delays (i.&/ = 0). Another Table 1 gives the estimation results for the continuous estima-

subclass of TDNNs with delays only at the input nodes can be tion of ww. In each experiment the number of learning and test



[ experiment number 1 | 2 3 | 4 5
neural network configuration
paradigm MLP TDNN TDNN MLP-sw MLP-sw
structure 351251 331231 351251 | 3.351251 | 3-251251
number of weights 48 108 96 120 84
average errors
learning / testing L T L T L T L T L T
mean average erref, in um 95.26 54.10| 78.04 43.51| 79.48 43.71| 78.09 45.15| 82.65 45.25
standard deviatiob, / pg in % 171 227 253 318 220 215| 254 311| 145 174
minimum average erraning in um 92,55 51.88| 74.46 40.50| 75.46 41.46| 74.52 43.45| 80.36 43.95
maximum average errenaxy in um 97.28 55.45| 81.36 46.85| 83.11 45.37| 85.68 50.36| 85.54 46.97
median of the average errors med um || 96.47 54.78| 77.84 43.55| 79.64 43.77| 77.65 45.01| 82.60 45.16
Table 1: Estimation results for the continuous estimationue#

patterns has been 769 and 225, respectively. The description of the errorin ym

structure of a network has to be interpreted as follvd 12 > 1 o0 N

is a network with 3 inputs, 12 hidden nodes and 1 output,%nd \\

represents delays of 0, 1 and 2 from one layer of neurons to the %o learn patterns

next. In the case of a MLP-sw, -34 inputs means 12 inputs di- 80 Tl \} o 7% . %

vided into 3 sliding windows of length 4. T %‘ T
Experiment 1 shows the results for a common MLP which 70k mean

doesn’t consider pattern sequences. The best result (regarding the "~ average error

test patterns) with a TDNN is given in experiment 2. This network I 2 x standard

uses delays of 2 and 3 in the first and second layer of weights, re- 608 deviation xa

spectively. The first runner-up’ is presented in experiment 3. In 1 7

both cases, the mean average error for_ test patterns is about 20% 5oL "N test patterns - %

better compared with the MLP in experiment 1. The best results S oo Sp--- %- -

with a MLP-sw are given in experiment 4 and 5. As a remark, a o

fully connected TDNN with 3 inputs, 12 hidden nodes, 1 output aor ‘ ‘  length of the sliding window

and equal delays in each layer of weights operating on a recep- 1 2 3 4 5 6 7

tive window of lengthz has onlywtpnn = 24 - = 4 24 weights, Figure 5: Results with different sliding windows (MLP-sw)
whereas the corresponding MLP-sw (i.e. operating on the same

receptive window) hasy p-sw = 36 -  + 12 weights.
sliding window, the network begins to 'overfit' (the average error

100} &' in um for learning patterns decreases, whereas the average error for test
i . patterns and particularly the standard deviation increases signifi-
ool . 7 cantly). Fc_)r example, a MLP-sw with a inding win_dow of length
AN leam patters e 7 (264_ weights) sh_ouldn't be used for the_ estimation. _The corre-
N 7 sponding TDNN with delays 4/4 (192 weights) operating on the
801 ---- %‘ - % same receptive window, however, performs quite well. Comparing
fig. 4 and fig. 5, it can be stated that for the TDNNs with equal
70 ~__ mean delays in the two layers (in contrast to the MLP-sw networks) the
average error optimum for learning and test patterns is the same. Therefore it is
601 I ﬁexvifi‘gﬁa'd quite easy to decide on a certain network structure.
Y % An interesting question in the area of neural networks is,
s0f . test patterns ) { -7 whether a variation of the number of nodes in a hidden layer
X “po---F--- -} changes the results significantly. Fig. 6 shows some results with
40F ‘ _delay in each layer of weights a TDNN 33 z 3 1). Using between 6 and even 43 nodes in the
11 212 33 4/4 5/5 6/6

hidden layer leads to almost the same mean average error.

In any of the described experiments test patterns with values
for ww up to 1.5mm have been evaluated so far. However, such
worn inserts wouldn't be used in a chipping process. In accordance

giff del | ¢ weigh ith | delay. & with 1ISO recommendations [2], a wear limit of Otbm is usu-
ifferent delays (two layers of weights with equal delay, 3&» ally considered sensible. Taking this limit into account, the mean

125 1). With increasing delays the networks are not able to learn average error for test patterns in experiment 2 is only 3170
the input/output relationship correctly. However, the optimum in \yhich is an improvement of about 24.2% compared to 4186
figure 4 is quite wide. Fig. 5 presents comparable results for @ in experiment 1 under the same conditions. Tab. 2 shows the mean
MLP-sw (3 - y - 12 -5 1). With an increasing length of the identification rates of test patterns < 0.5mm) with a given

Y g leng p 9

Figure 4: Results with different number of delays (TDNN)

Fig. 4 shows the results of experiments using TDNNs with



acceptable maximum error and the mean maximum error with the
corresponding standard deviation for the experiments 1, 2 and 4.

error in pm

90r

learn patterns
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Figure 6: Different number of nodes in the hidden layer (TDNN)

[ experiment number I 1] 2] 4]
mean identification rates
error< 10 pm in % 9.71| 21.37| 19.62
error< 25 pm in % 30.75| 47.44| 46.47
error< 50 pm in % 68.06| 79.64| 77.69
error< 75 pm in % 88.60 | 93.45| 92.42
error< 100 pm in % 96.08| 98.00| 97.23
error< 200 pm in % 100.00 | 100.00 | 100.00
maximum errors
mean max. effOfimax iN pm || 143.65| 127.45| 132.70
std. deVomax / fimax iN % 1.40 570 | 12.14

Table 2: Identification rates and maximum errors

5. CONCLUSIONS AND OUTLOOK
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As a general result, it can be concluded that neural networks are
an excellent method to estimate the wear of turning tools provided [13]

that the input signals are aligned with respect to a force model
(about 15.8% increase of the precision, described in [14]) and

time-delay neural networks are used which consider the position[14]
of a single pattern in a pattern sequence by means of delay el-
ements at the synapses (about 24.2% additional increase of the

precision, described here). Slight modifications of delays and the
number of neurons in the hidden layer don't change the results

significantly. Comparable investigations with TDNNs and/or the [15]
mentioned preprocessing measures are not known. The ideas and
solutions presented in this paper could be transfered to other on-
line wear monitoring problems, particularly problems which have [16]
to cope with extremely noisy data, e.g. other machining processes

using tools with defined cutting edges (e.g. milling or drilling).

Our actual and future research also deals with tests of other

learning algorithms and the use of energy parameters as inputs of17]

the networks. Genetic algorithms will be used to find the optimal
structure of a neural network and the optimal time delays. Addi-
tionally, we investigate variations of the process model in order to

improve the pre-processing step.

18]
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