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ABSTRACT

Wear monitoring systems often use neural networks for a sensor
fusion with multiple input patterns. Systems for a continuous on-
line supervision of wear have to process pattern sequences. There-
fore recurrent neural networks have been investigated in the past.
However, in most cases where only noisy input or even noisy out-
put patterns are available for a supervised learning, success is not
forthcoming. That is, recurrent networks don’t perform noticeably
better than non-recurrent networks processing only the current in-
put pattern like multilayer perceptrons. This paper demonstrates
on the basis of an application example (online tool wear moni-
toring in turning) that results can be improved significantly with
special non-recurrent feedforward networks. The approach uses
time-delay neural networks which consider the position of a sin-
gle pattern in a pattern sequence by means of delay elements at
the synapses. In the mentioned application example, the average
error in the estimation of a characteristic wear parameter could be
reduced by about 24.2% compared with multilayer perceptrons.

1. INTRODUCTION

Online tool monitoring in turning has to deal with the detection of
collisions, the identification of tool breakage and the determination
of a tool’s wear. The latter task is the most difficult in this area, but
the possible economic advantages are important: on the one hand
tool costs can be reduced with a good exploitation of the tool’s
lifetime and on the other hand products with a higher surface qual-
ity can be produced exchanging worn tools in time. Without using
monitoring systems, tools have to be exchanged precautionary de-
pending on the operator’s observations and experience. Commer-
cial systems have some serious disadvantages like causing false
alarms and many reactions not being transparent to the operator.
Scientific approaches use neural networks, fuzzy systems or com-
binations of both (see e.g. [1, 3, 4, 5, 6, 7, 10, 15, 17]). However,
due to insufficient generalization capabilities or simply a lack of
precision even promising methods are not marketable up to now.
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Figure 1: Tool holder with insert and cylindrical turning process

A detailed description of metal cutting processes is given for
example in [12]. Modern NC-lathes usually provide tools with
throw-away inserts attached on a rotatable turret (see fig. 1, left
side). In this paper, results are given for cylindrical turning pro-
cesses, the most frequently used process type (see fig. 1, right
side). The wear of an insert can be classified into different types
(e.g. fractures, diffusion, erosion or abrasion) or manifestations
(e.g. crater wear or flank wear) [12]. The parameterww describ-
ing the width of wear land at the major flank mainly caused by
abrasion is usually considered as an expressive quantity for the
overall wear state of an insert (see fig. 2). Values up to 2.6mm
occured in our experiments.
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Figure 2: Definition of the wear parameterww

Neural Networks used for a continuous supervision of wear
have to process pattern sequences. Therefore recurrent networks
have been investigated by some authors (see e.g. [3, 5, 15]). How-
ever, in most cases where only noisy input or even noisy out-
put patterns are available for a supervised learning, success is not
forthcoming. That is, recurrent networks don’t perform noticeably
better than non-recurrent networks processing only the current in-
put pattern like multilayer perceptrons. This paper shows how
the continuous estimation of the wear parameterww can be im-
proved significantly using special non-recurrent feedforward net-
works which consider the position of a single pattern in a pattern
sequence by means of delay elements at the synapses. Comparable
investigation are not known (the ’time-delay networks’ used in [3]
are special recurrent networks).

2. INPUT AND OUTPUT PARAMETERS

Signals from sensors in machine tools are disturbed for many rea-
sons: outbreaks at cutting edges, chatter (i.e. self-exited vibra-
tions), sensor nonlinearity, noise of digitizers etc. Only by means
of a multisensor data fusion technology it is possible to deter-
mine the tool’s wear (although there are additional disturbances



e.g. in form of crosstalk effects between sensor channels). There-
fore three sensor elements (piezo-electric) for the measurement of
forces in the three orthogonal directions have been used (sampling
rate 10kHz). With this sensor system, a large number of experi-
mental cylindrical turning processes with more than 30 inserts has
been carried out. The wear parameter has been determined peri-
odically by means of a microscope. It must be noticed, thatww
could be determined with a precision of about 5�m only and that
a removal of the insert in order to measureww can noticeably
disturb any of the three forces in the following cut. Five static
and dynamic process parameters (type of the insert (coating and
substrate), depth of cut, feed rate, cutting speed, workpiece diame-
ter) have been varied in these experiments. Other parameters, e.g.
those which describe the tool geometry (corner radius, clearence
and cutting angle, cutting edge inclination etc.) or the workpiece
material (steel Ck45), have been identical in all experiments.

Output parameterof the neural network is the width of wear
land ww; input parametersare the average values of the three
forces in a certain short time window. Before computing these
inputs, the force signals are aligned with respect to a force model.
For this reason, each measured force value is divided by a correc-
tion factor which has been derived from a physical / mathematical
model of machining processes with defined cutting edges origi-
nally developed by KIENZLE, VICTOR et al. (see e.g. [9]). Com-
pared with neural networks using ’non-aligned’ force signals and
process parameters as additional inputs, the precision of the es-
timation could be improved by about 15.8% with pre-processed
forces only [14].

The problem is now to find a relationship between extremely
noisy input data (see above) and output data which also can be
called ’noisy’, becauseww describes the overall wear in a quite
simplified way and cannot be determined exactly. However, based
on a sufficient number of training patterns, neural networks are
able to ignore disturbed or noisy information, to detect fundamen-
tal interdependencies and to approximate a sought non-linear func-
tion (see e.g. [18]).

3. NEURAL NETWORK PARADIGMS, STRUCTURE
AND TRAINING

Time-delay neural networks (TDNN) are non-recurrent networks
which use more than one connection between two nodes in succes-
sive layers [16, 8]. Each connection is able to delay the propaga-
tion of values and has its own weight (see fig. 3, a delay element
Dx delays its input by x time steps). Therefore the inputs to a
node consist of the outputs of previous nodes not only during the
current time stept, but during some previous time steps as well
(usually but not necessarily a time sequence without gaps which is
mostly identical for all connections between two layers of nodes,
e.g.t; t � 1; :::; t � N ). The output (or activation) of a nodei is
consequently given by

yi(t) = A
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ya(t� b) � wa;i;b
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whereyi(t) is the output of nodei at timet,wa;i;b is the weight of
a connection between nodea in layerx andi in layerx+ 1 with
time delayb, andA is an activation function.

With the given definition multilayer perceptrons (MLP) are a
subclass of TDNNs without ’real’ delays (i.e.N = 0). Another
subclass of TDNNs with delays only at the input nodes can be

shown – on the assumption of certain start conditions for a pat-
tern sequence – to be equivalent to multilayer perceptrons with
a sliding window (MLP-sw) [18]. The mentioned subclass of
TDNNs uses an internal representation of the temporal informa-
tion, whereas the MLP-sw networks need input patterns which
have been delayed externally.
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Figure 3: Time-delay neural networks

Networks with one hidden layer (12 nodes, fully connected)
have been trained with the resilient backpropagation (RPROP) su-
pervised learning algorithm (batch learning, 50000 epochs) [11].
The activation function has been the non-linear sigmoid activation
function. The experiments in the following section compare MLP,
TDNN and MLP-sw networks with different delays. In previous
investigations it has been shown that MLPs perform better than
Classifying SOMs, FuzzyARTMAPs and NEFCLASS networks
[13].

4. RESULTS

To assess the generalization capability of a trained network, results
for learning (training) patterns have been compared with results
for unknown test patterns (’extrapolation’). In order to demon-
strate the ability to reproduce the result of a training starting with
randomly initialized weights, each experiment has been repeated
25 times. The mean average error (’mean’ refers to the 25 repeti-
tions and ’average’ to the set of test patterns in one experiment),
the standard deviation divided by this mean average error, the min-
imum and maximum average error and the median of the 25 aver-
age errors have been determined.

It must be noticed, that the test patterns belong to three chip-
ping experiments with combinations of process parameters which
lie in an area of the paramenter space covered quite well with chip-
ping experiments. For the available data this measure turned out
to be necessary as a result of the uneven and sparse distribution of
parameter combinations in the parameter space. That’s why results
for test patterns are better than results for training patterns. How-
ever, the relative improvements with different network paradigms
and structures are obvious and the conclusions are valid in any
way.

Table 1 gives the estimation results for the continuous estima-
tion of ww. In each experiment the number of learning and test



experiment number 1 2 3 4 5
neural network configuration

paradigm MLP TDNN TDNN MLP-sw MLP-sw

structure 3
1
!12

1
!1 3

2
!12

3
!1 3

2
!12

2
!1 3 � 3

1
!12

1
!1 3 � 2

1
!12

1
!1

number of weights 48 108 96 120 84

average errors
learning / testing L T L T L T L T L T
mean average error�� in �m 95.26 54.10 78.04 43.51 79.48 43.71 78.09 45.15 82.65 45.25
standard deviation�� / �� in % 1.71 2.27 2.53 3.18 2.20 2.15 2.54 3.11 1.45 1.74
minimum average errormin� in �m 92.55 51.88 74.46 40.50 75.46 41.46 74.52 43.45 80.36 43.95
maximum average errormax� in �m 97.28 55.45 81.36 46.85 83.11 45.37 85.68 50.36 85.54 46.97
median of the average errors med� in �m 96.47 54.78 77.84 43.55 79.64 43.77 77.65 45.01 82.60 45.16

Table 1: Estimation results for the continuous estimation ofww

patterns has been 769 and 225, respectively. The description of the

structure of a network has to be interpreted as follows:3
3
!12

3
!1

is a network with 3 inputs, 12 hidden nodes and 1 output, and
3
!

represents delays of 0, 1 and 2 from one layer of neurons to the
next. In the case of a MLP-sw, 3� 4 inputs means 12 inputs di-
vided into 3 sliding windows of length 4.

Experiment 1 shows the results for a common MLP which
doesn’t consider pattern sequences. The best result (regarding the
test patterns) with a TDNN is given in experiment 2. This network
uses delays of 2 and 3 in the first and second layer of weights, re-
spectively. The first ’runner-up’ is presented in experiment 3. In
both cases, the mean average error for test patterns is about 20%
better compared with the MLP in experiment 1. The best results
with a MLP-sw are given in experiment 4 and 5. As a remark, a
fully connected TDNN with 3 inputs, 12 hidden nodes, 1 output
and equal delays in each layer of weights operating on a recep-
tive window of lengthx has onlywTDNN = 24 � x+ 24 weights,
whereas the corresponding MLP-sw (i.e. operating on the same
receptive window) haswMLP-sw = 36 � x+ 12 weights.
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Figure 4: Results with different number of delays (TDNN)

Fig. 4 shows the results of experiments using TDNNs with
different delays (two layers of weights with equal delay, i.e.3

x
!

12
x
!1). With increasing delays the networks are not able to learn

the input/output relationship correctly. However, the optimum in
figure 4 is quite wide. Fig. 5 presents comparable results for a

MLP-sw (3 � y
1
! 12

1
! 1). With an increasing length of the
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Figure 5: Results with different sliding windows (MLP-sw)

sliding window, the network begins to ’overfit’ (the average error
for learning patterns decreases, whereas the average error for test
patterns and particularly the standard deviation increases signifi-
cantly). For example, a MLP-sw with a sliding window of length
7 (264 weights) shouldn’t be used for the estimation. The corre-
sponding TDNN with delays 4/4 (192 weights) operating on the
same receptive window, however, performs quite well. Comparing
fig. 4 and fig. 5, it can be stated that for the TDNNs with equal
delays in the two layers (in contrast to the MLP-sw networks) the
optimum for learning and test patterns is the same. Therefore it is
quite easy to decide on a certain network structure.

An interesting question in the area of neural networks is,
whether a variation of the number of nodes in a hidden layer
changes the results significantly. Fig. 6 shows some results with

a TDNN (3
3
! z

3
! 1). Using between 6 and even 43 nodes in the

hidden layer leads to almost the same mean average error.
In any of the described experiments test patterns with values

for ww up to 1.5mm have been evaluated so far. However, such
worn inserts wouldn’t be used in a chipping process. In accordance
with ISO recommendations [2], a wear limit of 0.5mm is usu-
ally considered sensible. Taking this limit into account, the mean
average error for test patterns in experiment 2 is only 31.79�m
which is an improvement of about 24.2% compared to 41.96�m
in experiment 1 under the same conditions. Tab. 2 shows the mean
identification rates of test patterns (ww � 0.5mm) with a given



acceptable maximum error and the mean maximum error with the
corresponding standard deviation for the experiments 1, 2 and 4.
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Figure 6: Different number of nodes in the hidden layer (TDNN)

experiment number 1 2 4
mean identification rates

error� 10 �m in % 9.71 21.37 19.62
error� 25 �m in % 30.75 47.44 46.47
error� 50 �m in % 68.06 79.64 77.69
error� 75 �m in % 88.60 93.45 92.42
error� 100 �m in % 96.08 98.00 97.23
error� 200 �m in % 100.00 100.00 100.00

maximum errors
mean max. error�max in �m 143.65 127.45 132.70
std. dev.�max / �max in % 1.40 5.70 12.14

Table 2: Identification rates and maximum errors

5. CONCLUSIONS AND OUTLOOK

As a general result, it can be concluded that neural networks are
an excellent method to estimate the wear of turning tools provided
that the input signals are aligned with respect to a force model
(about 15.8% increase of the precision, described in [14]) and
time-delay neural networks are used which consider the position
of a single pattern in a pattern sequence by means of delay el-
ements at the synapses (about 24.2% additional increase of the
precision, described here). Slight modifications of delays and the
number of neurons in the hidden layer don’t change the results
significantly. Comparable investigations with TDNNs and/or the
mentioned preprocessing measures are not known. The ideas and
solutions presented in this paper could be transfered to other on-
line wear monitoring problems, particularly problems which have
to cope with extremely noisy data, e.g. other machining processes
using tools with defined cutting edges (e.g. milling or drilling).

Our actual and future research also deals with tests of other
learning algorithms and the use of energy parameters as inputs of
the networks. Genetic algorithms will be used to find the optimal
structure of a neural network and the optimal time delays. Addi-
tionally, we investigate variations of the process model in order to
improve the pre-processing step.
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