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ABSTRACT

Transmitter redundancy introduced using FIR filterbank
precoders offers a unifying framework for single- and
multi-user transmissions. With minimal rate reduction,
FIR filterbank transmitters with trailing zeros allow for per-
fect (in the absence of noise) equalization of FIR channels
with FIR zero-forcing equalizer filterbanks, irrespective of
the input color and the channel zero locations. Exploit-
ing input diversity, blind channel estimators, block synchro-
nizers, and direct self-recovering equalizing filterbanks are
derived in this paper. The resulting algorithms are com-
putationally simple, require small data sizes, can be im-
plemented online, and remain consistent (after appropriate
modifications) even at low SNR colored noise. Simulations
illustrate applications to multi-carrier modulations through
channels with deep fades, and superior performance relative
to CMA and existing output diversity techniques relying on
multiple antennas and fractional sampling.

1. INTRODUCTION

Redundancy at the transmitter builds input diversity in dig-
ital communication systems and is well motivated for de-
signing error correcting codes (e.g., [1]). But recently, input
diversity has been exploited also for ISI suppression using
precoders operating in the complex (as opposed to Galois)
field, [4, 6], [8, 9, 10], [12]). Different precoding schemes are
possible. Multiplying the inaccessible input by a known pe-
riodic sequence offers non-redundant precoding without de-
creasing the information rate, although the constellation’s
modulus is affected and equalization of FIR channels with
FIR equalizers is impossible [9]. On the other hand, repeat-
ing input symbols as in [10], leads to FIR equalizers but
reduces information rate by half. Combining desired fea-
tures, filterbank precoders and blind equalizers were pro-
posed in [4], to minimize the rate reduction, and obviate
channel zero restrictions imposed by spatio-temporal output
diversity methods that rely upon fractional sampling and/or
multiple-antenna reception [11], [13]. However, identifiabil-
ity in [4] was established only for white inputs and linear
equation or subspace algorithms were developed for sim-
ple precoders (see also [6]). In a deterministic multirate
framework, filterbanks for non-blind channel equalization
were also proposed in [12] under restrictions on the channel
ZEros.

Redundant filterbank precoders offer a unifying discrete-
time model which encompasses a wide range of digital mod-
ulation and coding schemes [8]. Those include: periodic
and line codes, orthogonal frequency-division multiplexing
(OFDM) and discrete multitone (DMT) [2], fractional sam-
pling [11], (de-)interleaving, as well as multi-user trans-
missions such as TDMA, FDMA, CDMA, and the most
recent discrete wavelet multiple access (DWMA) schemes
[7]. Redundant precoding brings input diversity similar to

that available with training sequences which have been ex-
ploited recently in a semi-blind channel estimation frame-
work [5]. However, filterbank precoders spread the training
bits across all the blocks over which the channel may be
changing.

Motivated by the generality and importance of filterbank
precoders, this paper builds upon [4] and [8] and derives
blind channel estimation and block synchronization algo-
rithms, as well as direct blind FIR equalizing filterbanks
that allow for deterministic and (white or colored) ran-
dom inputs (important for coded transmissions), without
imposing restrictions on channel zeros (Section 3). General
precoders equipped with trailing zeros (TZ) offer compu-
tationally simple algorithms and lead to zero-forcing (ZF)
or minimum mean-square error (MMSE) equalizing filter-
banks that accept also adaptive implementations. Exciting
options become available for blind equalization in OFDM —
a transmission standard for Digital Audio Broadcasting [2],
which is known to suffer from deep channel fades (see also
[3]). Consistency analysis and modifications needed at low
SNR environments are given also in Section 3 while simula-
tions and comparisons with F'S and CMA alternatives are
described in Section 4.

2. PRELIMINARIES

Consider the discrete-time multirate transmitter model of
the baseband communication system in Fig. 1. Downsam-
plers and upsamplers perform blocking (i.e., multiplexing)
and un-blocking (de-multiplexing) operations. With P >
M, the ratio (P — M)/P represents the amount of redun-

dancy introduced. Transmit filters {fm(n)}X -3 are FIR of

maximum order P—1, while the Lth order channel {R(1)}1_,
captures multipath effects and timing ambiguities as delay
factors. The input to the upsampler of the mth branch is
sm(n) := s(nM +m). It represents the m-th symbol in the
n-th block of M symbols, while in the multi-user case it
stands for the mth user’s bits. With the insertion of P — 1
zeros, the corresponding upsampler’s output is: wum(n) =
>, 8m(i)8(n —iP), where §(n) denotes Kronecker’s delta.
We will assume Nyquist signaling pulses; hence, their effect
disappears in discrete- time and the transmitted sequence
is: uln) = Zf\f 01 =2 Z (2) fm(n — 2P).
To obtain a block data model we deﬁne M X 1 vector
s(n) = (so(nM)sl(nM)---sM,l(nM))T, P x 1 vectors
x(n) = (z(nP)x(nP + 1)---z(nP + P — 1))7, £, =
Fn(0) -+ frn(M —1)0---0)T, P x M precoder matrix F :=
fo---far—1), and P x P Toeplitz lower triangular matrix
Ho with first column (A(0)---A(L)0---0)7. We assume:
aO Channel k() is Lth order FIR with h(0), h(L) # 0.
For a given L, the pair (P, M) is chosen to satisfy
P>M>LandP7M+L
Based on (a0), (al), the received block data model is [8]:
y(n) = x(n) + v(n) = HoFs(n) + v(n). (1)



Furthermore, we will assume here that:

(a2) Precoder filters have L trailing zeros; i.e., { fm(n)}2_,
=0,Vm € [0, M — 1], and are linearly independent; i.e.,
rank(F) = M, which guarantees one-to-one mapping and
thus recovery of s(n) from the coded symbols u(n).

(a3) There exists an N > P, such that the M x N matrix
S :=(s(0)---s(N—1)) has full rank M. With white inputs,
SSH tends (as N increases) to the input correlation matrix
R... But (a3) will be satisfied even for colored (e.g., coded)
inputs provided that their spectra are non-zero for at least
M frequencies (modes).

With moderate or large number of filters M in the pre-
coder, the maximum likelihood (ML) receiver implemented
with Viterbi’s algorithm has prohibitively large complexity
which motivates looking for linear (and preferably low or-
der FIR) equalizing filterbanks. ZF solutions offer (almost)
perfect symbol recovery in (high SNR) noise-free environ-
ments and their performance in terms of error probability is
easily computable. Sufficient conditions for their existence
and uniqueness were derived in [g]:

Theorem 1 Given F and Hy, there exists under (a0)-(a2)
a zero order M X P equalizing filterbank such that Gx(n) =
s(n). Minimum norm ZF filterbank is unique and is given

by: G,y = (HoF)!, where 1 denotes pseudo-inverse. O

Note that Thm. 1 poses no constraints on the channel ze-
ros. In contrast, FIR-ZF equalizers in [11, 13, 10, 12] do
not exist for certain configurations of channel zeros on the
unit circle, and more important, performance degrades even
when channels have zeros close to those non-invertible con-
figurations. If an upper bound L > L is only available on
the channel order, Thm. 1 holds true with L replacing L in
(al). Because for a fixed bandwidth the information rate
depends upon the ratio M/ P, we note that under (al), the
rate reduction can be made arbitrarily small by selecting
M (and thus P) sufficiently large.

In the presence of noise, a vector MMSE (or Wiener
equalizer can be derived by minimizing E{tr[Gy(n)—s(n)
[Gy(n) —s(n)]7}. It is given by [):

Ginmse = Roe F'HJ (Ryy + HoFRFTHY) 'L (2)
Note that both G.; and Gmse require channel estimates
which we derive next based on the received data only.

3. BLIND SYMBOL RECOVERY

Blind channel estimation is well motivated for wireless en-
vironments where the multipath channel changes rapidly
as the mobile communicators move. Self-recovering equal-
ization schemes are thus important to avoid frequent re-
training and thus increase bandwidth efficiency.

3.1. Blind Channel Estimation B
Under (a2), x(n) = HoFs(n) = HoFs(n), where Hp is
formed by the first M columns of Hy. Collecting N data

vectors {x(n) 71:7;01 in a matrix, we arrive at:

Xy = (x(0)---x(N—-1)) = HoFS, (3)
where S is defined as in (a3). Because of (a0), h(0) # 0,
and thus rank(Hg) = M, which along with (a2) and (a3)
imply that rank(Xy) = M. Therefore, the nullity of the
matrix XNX% is: Z/(XNX%) = P— M = L, and the eigen-
decomposition

H T T EM M OM L GH
xvxth = (00) (B @) (B ). @

yields the PX L matrix U whose columns span the nullspace
N(Xy). Since FS in (3) is full rank, R(Xx) = R(Ho),
where R stands for range space. But since R(Xy) is or-
thogonal to A(Xy), it follows that:

U Hy, =0 = o/ Tth) =07, 1=1,....,L (5

where 1; denotes the Ith column of U and 7T (h) is lower
triangular Toeplitz with first column (A(0) --- A(L)0---0)7.
But vector multiplication with a Toeplitz matrix denotes
convolution which is commutative and thus (5) can be writ-

ten as:

b u = n" (u---u) = 0, (6)
where each U is an (L+ 1) X M Hanﬁel matrix formed by 1;.
Our result and corresponding algorithm are summarized in
the following:

Theorem 2 Let (a0)-(a3) hold true. Starting from the
data matriz X, let us form the (L + 1) x ML matriz U
as in (3)-(6). Channel vector h can then be obtained as the
unique (within a scale) null eigen-vector of U in (6). O

With the channel matrix Ho available, we can proceed to
determine either the ZF equalizer filterbank from Thm. 1,
or, the MMSE equalizer from (2). In fact, it is possible to
derive MMSE equalizers involving a delayed decision (with
or without feedback), or, pursue the computationally com-
plex but optimal ML receiver. Instead, we focus next on
direct, blind equalizers that do not even require channel esti-
mation as a first step and being linear, they lend themselves
naturally to online self-recovering algorithms.

3.2. Direct Blind Equalization
Collect {x(n)}=3 blocks to form the data matrix Xy as
in (3), and define T := Hy ! to arrive at:

rxy - (B0 ). ¢

Lx1
Because the P x P matrix Ho is lower triangular Toeplitz,
it follows easily (by forming I'Hg = I) that the inverse I is
also lower triangular Toeplitz. Thus, all the rows {’yiT}f:l
of T' can be obtained from the last row v5. Relying on

(7), we will show how '\,/}TD can be determined using only the
received data matrix Xy in (3).

Let J denote a P x P shift matrix having all ones in
the first sub-diagonal and all other entries zero. Using J,

the rows of I' can be successively related: 'yiT = 'yiTJrlJ
'\,IiTJrQJ2 =... = 'y}TDJP*i, which implies that

VEIP T Xy = 4F Xy, i=1,...,P. (8)
But focusing on the last L rows of (7), it follows that for
i=PP—1,...,P— L+ 1 we have 'yiTXN = 07, which
after employing (8) leads to

e XN = vp (XyIXy--- I !XN) =07 (9)

It can be shown that the nullity »(X ) = 1; thus, v5 (and
hence I') can be determined from (9). In summary:

Theorem 3 Let (a0)-(a5) hold true. Then, v(Xn) = 1,
and vT can be identified from (9) as the unique (within a

scalar ambiguity) null eigen-vector of X n X With '\/ITD as
the Pth row, the lower triangular Toeplitz matriz T' can be
built and used in Thm. 1 to obtain Gy directly. O

The equalizer implied by Thm. 3 neither invokes any re-
strictions on the channel zeros nor it relies on any statistical
input assumptions (e.g., whiteness as in [4]). It thus recov-
ers the input exactly in the absence of noise. Because only
N > P data blocks are required in Xy, and each x(n) is
P x 1, the minimum number of symbols required is P2.

Remark: With f.(n) = exp(j2rmn/M), the filterbank
precoder of Fig. 1, reduces to the digital OFDM transmit-
ter [2]. Under (a2), the trailing zeros TZ-OFDM (detailed
in [8]) can be equalized blindly even when A(n) has unit
circle zeros located at 2rm/M — a case where deep fades
deteriorate performance of conventional OFDM (see also

[31)-



3.3. Direct Blind Synchronization

Eq. (1) assumes that block synchronization has been ac-
complished. Although techniques relying on training data
are available, it is possible to achieve block synchronization
blindly — a task complementing our blind equalizer nicely
(see also [10] for a statistical method). A deterministic blind
approach is proposed herein after observing that matrix X n
in (9) becomes full rank when the receiver is not block syn-
chronous. If blocks at the receiver are off by d = tg samples

and one forms XS\C,Z) matrices for each possible shift d, then
to can be found as:

to = argmin, Amin(X%)X%)H) s (10)
where Amin(X%)X%)H) denotes the minimum eigenvalue.
In the noise-free case, we have Amin(X%)X%)H) = 0 ac-

cording to Thm. 3, and Amin (X%)X%)H) > 0 for d # to.

3.4. Noisy Case — Consistency
When stationary additive noise v(n) is present, our data
covariance matrix Ry, := E{y(n)y™(n)} is given by
R,y = Ree + Ruw = HoFR.L.F"Ho + Ruw . (11)
Similar to (a3), we assume that:
(a3’) The M x M covariance matrix R is full rank;
Based on (a2) and (a3) we have rank(FR,,F#) =
M, whereas (a0) implies that rank(Hy) = M Hence,
rank(Rse) = M, and v(Ry.) = P— M = L, which
yields an L-dimensional noise subspace U, in the eigen-
decomposition Rzs = UIEIUf, where U, = (T:LD T:LD)
Arguing exactly as in (4), (5), we arrive at the orthogo-
nality condition: UX Hg = 0. Consider now the eigen-
decomposition Ry, = 02U, U and based on U,, eigen-
decompose Uy 'R, Uy 7

U,'R,, U, " U,'U.(Z, +o2n)UTU, 7 (12)

1 _ - Ul
= U,x,U,' = (0,0,) %, o
Y

from which it follows easily that U, = U, 'U,. Substi-
tuting the latter to our orthogonality condition, we find:
Uf UZ Hy = 0, which implies that our blind channel
identification algorithm applies even in the noisy case pro-
vided that R, (and hence Uv) are known. Note also that
knowledge of ¢2 is not necessary if v(n) is white.

In practice, sample averages replace ensemble correlation
matrices and consistency of our algorithm is guaranteed be-
cause y(n) in (1) is mixing (input s(n) has finite moments
and h(n) has finite memory); thus,

ay 1 m.s.s
Wy Zy<n>yH<n> "% Ryy, as N oo,

where m.s.s. stands for mean-square convergence. Because
U, is continous function of Ryy, it follows that the channel
estimator will be consistent.

The same argument establishes consistency of our deter-
ministic approach in Section 3.1 when v(n) is white, if one

observes that . 1
Ry = S YNYR, (13)

where Yy is formed exactly as Xx in (3) but with noisy
data, and with subscript NV denoting the number of blocks.

Turning now back to the direct equalizer of Section 3.3,
we find that:

T ~HitH
TR.. — (FR;,SLEPHO > = 3T R.. = 07, (14)

and arguing as in (8) we infer that 'y}TDJlRm = 07, which
implies that yZJ' R, (JHT = 07, for I = 0,1,...,L — 1.

Hence,

L—1
AT Ry =07, Ryp = ZJZRM(JZ)T . (18)
1=0
where R, can be shown to have nullity V(Rm) = 1. Thus,
if noise were not present, vy (and hence I') could be ob-
tained (Within a scale) as the null eigen-vector of Ry.. In
the noisy case we define Ryy (Rus) as Rae in (15) with Ry,
(R.y) replacing R,,. Eigen-decomposing Ry, = c2U,UE
and using (11) we can write

U'R U = U'RLUT + 02Ip0p
= UA+anu. (16)
Next, we define 'VJTD = '\,/}TD Uy, and use (15) to arrive at

LU "Rz = 07, which implies that FEU, "ReUy T =
07. The latter along with (16) yields

_T —1 H 2 T

Yp U, Ry, = 0,7p (17)
which shows that '?}TD is the eigen-vector of U, ’R,MLFH
correspondlng to the mlmmum eigenvalue o>. Based on 'yP

we can find 'yP = 'yPZ/lv and thus the dlrect equalizer T
relying only on the noisy covariance matrix Ry, and knowl-
edge of the noise covariance Ry.

If v(n) is white, then Ry, = o2 ZL 1yl Jl = o2
diag(12---L--- L), and its spectral factor in (17) is:

U, = diag(1\/2---VL---VL). (18)

With sample averages only available, con51stency of our
direct equalizer estimator follows easﬂy

The same argument establishes consistency of our deter-

ministic method in Section 3.2 if we recall the definition of
Y~ in (13) and note that

~ (N 1 B
’R;y) = NyNyzifla In = (YNJYN---JL 1YN) .

When the SNR is high, the deterministic solution sh&ll?a
be preferred and the minimal number of blocks N = P
should be used for computational simplicity. However, at

low SNR, N should be chosen large enough to obtain reli-
& (V)

able estimates R, .

4. SIMULATIONS — COMPARISONS

Example 1 (Blind Synchronization): We implemented the
system in Fig. 1 with (P, M, L) = (19,16, 3) and channel

j (SNR = 10dB). Matrix Y\ with
N = 197 was formed as in (19), collecting in a matrix Y@

the vectors y(¥ (n) = (y(nP+d),---,y(nP4+d+P—1)) for

different delays d € [0, 8], and the minimum eigenvalue of

y(d) DH was evaluated according to (10) for each d and
plotted in Fig. 2 (sample mean with solid and st. deviation
bounds with dashed computed based on 100 Monte Carlo
runs). The true delay was tg = 0 and the curves in Fig. 2
indicate clearly a minimum at d = 0, illustrating that it is
possible to estimate the correct time offset as in (10).

Example 2 (Blind Channel Estimation vs [13]): Fig. 3 shows
the root-mean square error (RMSE) of the blind channel
estimate of our approach (solid line) and the deterministic
approach in [13] (dashed line), based on the channel simu-
lated in [13, Table IT]. For both cases 100 data samples were
used for blind channel estimation. The advantage of this pa-
per’s approach is evident, although we used only one of the
four channels used in [13]. This illustrates that introducing

with zeros at: 0.9, 7, —



redundancy at the transmitter improves performance, rela-
tive to methods that rely on output redundancy, while at
the same time receiver complexity is reduced.

Example 3 (Direct Blind Equalizer — CMA comparison): We
simulated N = 19 blocks of 8PSK symbols, each block
with P = 19 (M = 16 information symbols and L = 3
TZs). The 3rd-order channel had zeros at: 0.9, 7, —j, and
the SNR at the receiver was fixed at 13 dB. With this rel-
atively low-SNR, we implemented the deterministic direct
equalizer approach summarized in Thm. 3, using the min-
imal number of samples P? = 361. To compare with Con-
stant Modulus Algorithm (CMA), Fig. 4 shows the scat-
tering diagram obtained in the following cases: (a)without
equalization, (b)with the ZF equalizer of Thm.1, (c)with
the MMSE equalizer of (2), and (d)with the CMA. For the
CMA, we used a 30-tap equalizer and the adaptation rule
has run over N = 10,000 samples at SNR = co.
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Figure 2. Blind Synchronization via (10).
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