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ABSTRACT

This paper presents a novel method for jointly estimating
the time-delay parameters and detecting the transmitted
symbols in a DS-CDMA system. A short training sequeunce
is used to get an initial estimate of the time-delay, which
is consequently used to detect the symbols. The method
then iterates while exploiting signal structure, to improve
the performance. Simulation results are presented to com-
pare the algorithm with the decorrelating criterion and the
matched-�lter receiver in terms of bit-error rate, and with
the MUSIC algorithm and the sliding correlator in terms of
the variance of the time-delay estimates.

1. INTRODUCTION

Code Division Multiple Access (CDMA) has a number of
potential advantages compared to TDMA/FDMA (cell-reuse
factor, graceful degradation, speech monitoring, soft han-
dover, multipath resistance), and it is predicted by many
to be the method of choice for employment of future mobile
cellular communication systems. This fact has contributed
strongly to the huge interest for research results concerning
CDMA over the last decade. A signi�cant factor that limits
the theoretical system capacity in such systems is the near-
far e�ect. A number of receivers that are near-far resistant
[1, 2, 3], usually assume some knowledge of the time-delay
among respective users in order to suppress the MAI (Multi
Access Interference), or at least synchronization to the de-
sired user [3, 4]. More recently, a number of publications
has focused on methods that provide estimates of channel
parameters (such as time-delay, phase, channel gain), where
the challenge again is robustness in environments with very
dissimilar power levels among the subscribers [5, 6].

This paper focuses on a method of jointly detecting the
transmitted symbols and estimating the time delay param-
eters. In summary, it is a single-user method, operating
on one signal at a time while treating the remaining sig-
nals as noise. The criterion used to estimate the respective
time-delays can be interpreted as a subspace approach, but
without some of the drawbacks of previous methods [7, 8],
such as the need to perform an eigendecomposition as well
as knowledge of the model order.

2. REFINED SIGNAL MODEL

The model to be described considers a K-user asynchronous
DS-CDMA system operating in a fading environment. The
code waveforms are assumed to be unit-amplitude, rectan-
gular and periodic, with chip-duration Tc = T=L, where T
is the symbol period and L is an integer. The symbols be-
long to some complex alphabet
. The k'th user's baseband
signal is sk(t) =

P
1

�1
dk(n)ck(t�nT ), with ck(t) being the

code waveform of user k. The total received signal is the
superposition of all K signals, and can be expressed as

r(t) =
KX
k=1

RkX
r=1

�k;rsk(t� �k;r) cos(!ct+ �k;r) + n(t): (1)

where �k;r is the complex channel gains for each of the
Rk paths of user k. The path delays �k;r 2 [0; T ); r =
1; : : : ; Rk and �k;r is a random phase.

The received signal is downconverted to in-phase and
quadrature components, followed by an integrate-and-dump
stage with integration time Ti = Tc=Q, i.e. Q is the over-
sampling factor. Now, for symbol interval n, QL samples
of this complex baseband sequence is collected in a vector,

r(n) = [r(nQL+ 1); : : : ; r(nQL+QL)]

and after some straightforward manipulation, one can ex-
press the k'th user's contribution to the signal as
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= HkBkzk(n) + n(n):

It will be assumed that n(n) is white Gaussian with variance
�2. The columns of Hk are functions of the time-delays and
the code waveforms
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c1 = [c1(1) c1(2) : : : c1(QL)]
T :

The time delay � = pTi+ �, is such that p is an integer and
� 2 [0; Ti). ds(�; �) is the down-shift operator, acting on an
arbitrary N -vector as

ds((a1 a2 : : : aN)
T ; q)

=
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�
if q � 0;�

a1�q a2�q : : : aN 0 : : : 0
�

if q � 0:
(2)

A model for the complete signal is the simply the sum of
all K users and an additive noise term, given by

r(n) =
KX
k=1

rk(n) = HBz(n) + n(n) 2 C
QL (3)
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The total number of paths is denoted R =
PK

k=1Rk.

3. ALGORITHM

The aim is to get an initial estimate of the time-delay for the
user of interest (say user 1) using a short training sequence,
and then use this estimate to obtain an estimate of the
matrix z1 in (2), which will subsequently be used to re�ne
the estimate of � 1. The criterion function to be minimized
to estimate � 1 closely follows the approach taken in [9],
where the problem is direction-of-arrival estimation.

3.1. The time-delay estimation criterion

In short, the idea is to work on one signal at a time (the
signal-of-interest, SOI), and treat the other signals as in-
terference. In order to formulate a likelihood function, this
intereference together with the background noise is assumed
to be Gaussian. Although this is clearly a false assumption,
it has been made in order to simplify the minimization of
the resulting criterion to an Rk-dimensional space. A true
ML criterion is simple to formulate, but requires minimiza-
tion over a an R-dimensional space, which is prohibitively
complex. Start by rewriting (3) to

r(m) = H1B1z1(m) +
KX
k=2

HkBkzk(m) + n(m)

= H1B1z1(m) + j(m)

The negative log-likelihood function, based on modeling
j(m) as complex Gaussian with covariance Rjj , is

`(�1;B1;Rjj) = log jRjj j+TrfR�1jj 	1(�1;B1)g (5)
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2:

This expression can now be manipulated to give a criterion
in � 1, of dimension equal to the number of paths for the
desired user R1. The details of the derivation can be found
in [9], and yields the following

f(� 1) = �11 +�22 +�11�22 � j�12j
2 (6)
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andH1 = H(�̂ 1). Once �̂ 1 has been computed, the complex
channel gains can be estimated from the expression
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3.2. The complete detection-estimation algorithm

Assume N vector samples of the signal r(n) (equation 3) is
collected in a matrix rN of dimension L�N .

The idea is now to �rst obtain an initial estimate of
the time-delay for the desired signal using a short training
sequence. Following this, the matrix z1 is estimated and
used to re�ne the estimate �̂ 1. This process is repeated
in an iterative fashion until convergence, followed by data
demodulation (ẑ1 �! d̂1;N ). Treating the demodulated
data as the true transmitted sequence, a �nal estimate of
� 1 can be obtained. Speci�cally, the method operates as
follows;

1. Compute the sample correlation matrix

R̂rr =
1

N

NX
n=1

r(n)r�(n)

2. Initial estimate of �1 using training sequence

�̂ 1 = argmin
�1

f(� 1) (8)

3. WLS estimate of z1

ẑ1 = argmin
z1

kR̂
�

1

2
rr
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rN �H(�̂ 1)z1

�
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�! project to 
 (�1) (9)

4. Re�ned time-delay estimate using all data rN and ẑ1

�̂ 1 = argmin
�1

f(� 1) (10)

5. Repeat steps 3-4 until convergence

6. Demodulation; ẑ1 �! d̂1;N , (see below)

7. Final time-delay estimate (if desired) as before, using
demodulated bits d1;N



The following comments can be made. First of all, the
minimization of (8) is reasonable to carry out using a simple
grid search, unless the number of multipath (Rk) is large.
Else, other numerical methods (Newton-type) can be con-
sidered. Also, one can choose to search over a reduced grid
in (10), with the assumption that the initial estimate of �
from (8) is su�ciently good.

The formulation of the likelihood function (5) requires
that Rjj be circularly symmetric. Though a reformulation
using a real-valued observation vector is straightforward, it
has been empirically observed that the complex formulation
(5) performs better.

The demodulation in step (6) of the algorithm is carried
out using well-known ideas of decision-feedback equaliza-
tion. It is evident from the model (2) that to obtain d̂1(n),
one should combine the estimates of ẑ1(n) and ẑ1(n+1), as
well as subtract the already detected d1(n � 1) (assuming
it's correct). So that

d̂1(n) = sgn

�
f
�
x(n)

�
(11)

where f is a 5-tap �lter chosen to minimize E
�
(d1(n) �

f�x(n))2
�
, and x(n)

4
=
�
ẑT1 (n) ẑT1 (n + 1) d̂1(n � 1)

�T
.

the derivation is straightforward but omitted due to space
limitations.

4. SIMULATION RESULTS

A 5-user system was simulated, using code sequences of
length L = 15. Two primitive polynomials of order 4 were
combined as h(x) = g1(x)g2(x), where g1(x) = x4 + x + 1
and g2(x) = x4+x3+1, in order to generate these sequences.
No oversampling was used (i.e. Q = 1), time-delays were
randomly chosen as � = [2:52 4:31 6:52 9:92 13:24]T ,
and \�k = 0; 8k. A scenario with only one path per user
on an AWGN channel is considered. Results were averaged
over 500 Monte Carlo simulations with 400 bits in each
burst.

In �gure (1), the proposed method is compared to the
decorrelating criterion and the mathed-�lter receiver for a
near-far ratio of 0 and 10 dB (i.e. �k=�1 = 0(10) dB 8k).
A training sequence of 20 bits was used. This should be
compared to �gure (2), which is for the same scenario, ex-
cept that the training sequence has been increased to 40
bits. As is well known, the matched-�lter receiver's perfor-
mance deteriorates rapidly in a near-far scenario, whereas
the decorrelator is insensitive to this. The plots seem to
indicate that the length of the training sequence only plays
a role when the intereference powers are much higher than
the SOI.

It is important to keep in mind that the decorrelator
requires the knowledge of all the user's time-delays, and
that the matched-�lter receiver is synchronized to the SOI.
Results reported in [10] has shown that the performance
of the decorrelator is very sensitive to the quality of the
time-delay estimates, especially at high interference levels.
Therefore, one can rightly claim that the results shown here
are biased in favor of these methods.

The performance criterion for the estimation of �1 is
the standard deviation of the estimation error, std(�̂1� �1).
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Figure 1: Probability of bit-error vs. SNR for proposed
method using a short (20 bits) training sequence, for a near-
far ratio of 0 (lower) and 10 dB (upper).
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Figure 2: Same as �gure (1) using a long (40 bits) training
sequence.

The results are shown in �gures (3) and (4), for a near-far
ratio of 0 and 10 dB, respectively. The proposed method
is compared to the MUSIC estimator [8, 7] (which assumes
knowledge of the model order, K), and the sliding correla-
tor (assuming the entire burst to be known), as well as the
Cramer-Rao bound, which is conditioned on the transmit-
ted symbols [11].

It can be seen that the proposed method has better per-
formance than the MUSIC algorithm as long as the training
sequence is su�cienly long (40=400 = 10% overhead). This
is intuitive, since it estimates the symbols and uses this
(mostly correct) information to obtain �̂1. Also, the sliding
correlator is not able to handle those scenarios where the
multi-access interference dominates the background noise.
Table 1 lists the percentage of outliers, which were de�ned
as those trials where j�̂1 � �1j � 0:5 chips. These were
excluded when computing the standard deviation of �̂1 in
order to make the comparison to the Cramer-Rao bound
meaningful. The numbers show that with 40 training bits,



there are no outliers except for low SNR and high interfer-
ence levels.

5 6 7 8 9 10 11 12 13 14 15
10

−3

10
−2

10
−1

10
0

SNR, (dB)

st
an

da
rd

 d
ev

ia
tio

n

Cramer−Rao        
MUSIC             
sliding correlator
Proposed method   

j�kj=j�1j = 0 dB

Figure 3: Standard deviation of estimation error in �̂1 for
a near-far ratio of 0 dB, for short (upper) and long (lower)
training sequence, respectively
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Figure 4: Same as �gure (3) with a near-far ratio of 10 dB.

5. CONCLUSION

A novel method which performs joint estimation of time-
delay parameters and symbol detection in a DS-CDMA
system was presented. The method can be interpreted in
a subspace-context, but unlike some previously reported
methods, it does not need to perform an eigendecompo-
sition, nor does it need knowledge of the model order. The
good performance is obtained by iterating between (time-
delay) estimation and (symbol) detection, as well as exploit-
ing �nite-alphabet signal structure.

Proposed method correlator
Nt 20 40

Pk
P1
(dB) 0 10 0 10 0 10

SNR
6 23 % 37.8 % 0 % 4.2 % 0 % 10 %
10 5.4% 12.8 % 0 % 0 % 0 % 10 %
14 2 % 3.2 % 0 % 0 % 0 % 10 %

Table 1: percentage of outliers
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