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ABSTRACT

A low-power feature extraction chip computing cepstral coeffi-
cients from linear predictive analysis on one-bit quantized speech
signal is presented and its VLSI implementation is evaluated. An
isolated-word small-vocabulary speech recognizer based on these
features has been developed. Its recognitionaccuracy is within
2% below a system based on standard linear predictive cepstral
features. The power consumption of the feature extractor chip is
30�W at 0.9V.

1. INTRODUCTION

Low-cost VLSI speech recognition systems have several promis-
ing applications in large volume products such as personal digital
assistants and communicators (PDAs, PDCs) and toys. These sys-
tems must feature very low-power electronics, single battery-sized
supply and simple analog-to-digital conversion.

Previous works [1, 2, 3] show that a drastic one-bit quantization
of the speech signal does not severely affect its intelligibility and
discrimination power in isolated-word recognition tasks. In par-
ticular [2, 3] present recognition systems proving that the recogni-
tion accuracy has a small degradation when the set of features is
computed from the one-bit quantized (1BQ) speech through linear-
predictive (LP) analysis. Hence, reduced computational complex-
ity and simplified analog circuitry can be used, and voltage scaling
techniques can be effectively applied to the digital recognition sys-
tem to drop power consumption.

In this paper we present a low-power, low-voltage VLSI fea-
ture extractor based on one-bit quantized speech that computes a
set of variance-weighted cepstral coefficients for recognition. This
system avoids the full analog-to-digital conversion of the speech
signal allowing the reduction of the analog circuitry to simple fil-
tering.

The proposed speech preprocessor is part of a complete speech
recognizer to be implemented in a single chip. This block has been
realized as a stand-alone block to evaluate the impact of aggressive
voltage scaling techniques on this kind of applications.

The goal of low-power consumption is pursued starting from
the algorithmic down to the electrical level. Suitable algorithms
should feature simple arithmetics and should achieve efficient par-
allelization of the computation so that an architectural voltage scal-
ing approach can be exploited [4].

In the following sections the main algorithmic and architectural
choices are described.

2. ALGORITHM

Optimal LP filter computation requires the evaluation of the auto-
correlation function (ACF). Short-termp-th order autocorrelation
of the speech signals(i) can be computed as follows:

rk =
1
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wherew(i) is a function that is zero out of theN -samples window
under examination. In case of 1BQ speech (i.e.s(i) 2 f�1; 1g)
and rectangular windowing function, thek-th autocorrelation co-
efficient can be simply computed by counting how many sign
changes occur between samples belonging to the speech window
at distancek, in fact:
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where the multiplication is replaced by a logic function XOR be-
tween the samples coded at 1 bit ( values�1; 1 of s(i) are mapped
to the binary values0; 1 respectively forsb(i)). In [3] it is shown
thatrk may be estimated as:

rk �=
N � 2

PN

i=1
sb(i)� sb(i + k)

N
(1)

This formulation is useful for hardware implementation when the
analysis is performed on overlapping windows and the frame du-
ration is an integer divider of the window duration. In our system
window duration is 32ms, frame duration is 8ms and speech signal
is sampled at 8kHz. In this case a relevant reduction of computa-
tion can be achieved splitting the counting

PN

i=1
sb(i)�sb(i+k)

on single frames rather than counting over the whole window. In
this wayrk is obtained as sum of frame-based counts that can be
reused in the analysis of the next overlapping windows.

The Levinson-Durbin (LD) recursion is used to compute the LP
coefficients from the ACF. This algorithm relies on the positive



definiteness of the autocorrelation matrix which is a sufficient con-
dition for the consistence of results [5].
The use of approximation (1) requires a correction of the autocor-
relation matrix to guarantee its positive definiteness. A way [6] to
obtain this result is to increase the0-th order autocorrelation co-
efficientr0 from 1 to (1 + �), � > 0 (typical value for� are in
[0:1; 0:5]).
Spectra in Fig.1 give an idea of the information retained by 1BQ
speech. The LP-smoothed spectra of a 12BQ and 1BQ speech
segment are compared. 12-th order LP analysis with Hamming
windowing and 16-th order LP analysis using approximation (1)
have been used respectively. The plots show that the peaks in LP
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Figure 1: Comparison of LP inverse filter spectra

filter spectrum (formant of speech) are preserved after 1BQ of the
speech signal.

The Levinson-Durbin iteration may be summarized as follow:

km = ��m=�m (2)

am+1;l =

�
am;l + kmam;m+1�l l = 1; � � � ;m
km l =m+ 1

�m+1 = �m + km�m

�m+1 = rm+2 +
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with initial conditions�0 = r1; �0 = r0 = 1+�. It computes all
optimal LPm-th order filter coefficients (am;1; � � � ; am;m), with
m = 0; � � � ; p.

The fixed point implementation of the algorithm requires scal-
ing to the allowed integer range of the involved variables. Let us
assume that this range is mapped to the interval[�1; 1[.

It can be shown[6] thatkm 2]� 1; 1[ and from eq. (2) we have
j�mj < �m so that correct scaling of�m implies correct scaling
of �m. The algorithm bounds� in ]�; 1 + �] and it is found that
ai;j 2]� 4; 4[.

By reformulating the iteration usingrk = rk=2 andai;j =
ai;j=4 correct scaling of all variables may be obtained since this
scaling bounds�m in ]�=2; (1 + �)=2]. This allow the use of
�m = 2�m � � 2 [0; 1] instead of�m in the iteration, achieving
the exploitation of all bits used for its representation.

In the following the notation� n and� n is used to indicate
respectivelyn left-shifts andn right-shifts. The multiplication of

two n bit integers numbers generates a 2n bit number. To obtain
the n bit two’s complement integer representation of the result it is
necessary to shift right n-1 times the result, that is right bits have to
be selected. The operator� is used for this kind of multiplication
with the meaninga � b = (ab) � (n � 1). The fixed point
formulation of the Levinson-Durbin iteration is:
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2
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with initial conditions�0 = r1; �0 = 1. The evaluation of the
functionf(�) = 2

�m+�
should be implemented in a specialized

hardware unit so that no divisions are required.
Cepstral coefficients can be computed directly from the LP

model. If we callci the i-th cepstral coefficient andai the i-th
LP coefficient, the iteration is:

c1 = �a1

ci = �ai �
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Multiplying the second relation byi and exploiting the position
�i = �i ci, the iteration may be rewritten:

�1 = a1

�i = i ai +

i�1X
j=1

aj�i�j i = 2; � � � ;Ncep

achieving a substantial saving in the number of multiplications.
For 15 cepstral coefficients this formulation reduces the number
of multiplications to 57% of those in the trivial implementation.
Since the chosen set of features is cepstral coefficients normalized
according to the inverse of their standard deviation, the division by
�i (required to obtainci from �i) can be absorbed in the normal-
ization operation. It is found thatci 2]�4; 4[while �i 2]�16; 16[,
so scaling starting from scaledai version is straightforward too,
Calling �i = �i=16 the scaled version of�i, the fixed point imple-
mentation of the algorithm is:

�1 = a1 � 2

�i = i� ai � 2 + [

i�1X
j=1

aj � �i�j ]� 2 i = 2; � � � ;Ncep

Finally scaled cepstral featuresci = ci=4 may be obtained as
follow:

ci = [(
1

i�i
)� �i]� 2

where 1

i�i
are fixed weights (�i are evaluated analyzing speech

coming from different speakers in various environmental condi-
tions) that can be precomputed.

With the above positions the LP-Cepstrum computation can be
efficiently performed on a fixed-point system featuring an arith-
metic unit with integer multiplication, sum and shift, and a spe-
cialized unit for the evaluation off(�) = 2

�m+�
.



The word length has a great impact on power consumption es-
pecially when multiplications are involved. In this case the switch-
ing activity depends quadratically upon word length. To determine
minimum word length, the deviation of fixed point cepstral coeffi-
cients from floating point ones versus word length has been evalu-
ated. If cepstrum are normalized upon their standard deviation and
scaled in order to fit the allowed range, test shows that only the five
most significant bits of cepstral coefficients are needed for recog-
nition purposes. The value of LSB is about 6% of the range in
this case and 16 bit-wide integer arithmetic is enough to compute
cepstra with an error lower than the LSB quantization step.

3. ARCHITECTURE

The ACF computation has been implemented as shown in Fig. 2:
the sixteen scaled autocorrelation coefficients are computed in par-
allel on an 8ms frame basis. A counter for each block computes
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Figure 2: ACF computation

the partial autocorrelation coefficient over the current frame. This
value is circularly stored in 4 shadow registers, then the sum of
their values returns the ACF coefficient of the current window.

The LD and cepstrum recursions are implemented using 16-
bit two’s complement integer arithmetic. The two recursions re-
quire 256 16x16-bit and 135 16x8-bit multiplications, 16 recipro-
cal computations and 346 16-bit accumulations. To pack all these
operations in 256 clock cycles, an arithmetic unit with two mul-
tipliers, two accumulators and one shifter has been implemented
and the two basic computations have been joined.
The block that computes the functionf(�) has been implemented
by a piecewise-linear approximation made up of four segments
with slope -8, -4, -2, -1 respectively. The maximum relative er-
ror of the piecewise linear approximation over the entire� range
is 1.9%. Compared with a simple lookup table implementation
this solution guarantees a strictly decreasing function that avoids
recursion convergence problems.

To store the temporary values required by the operations, a set
of 30 registers of 16 bits each is provided, in addition to the output
data register. A microcoded sequencer controls all the operations
and performs the correct input and output selection of each block
and the current computation performed by the arithmetic unit. The
block diagram of the feature extractor is shown in Fig. 3.

A partial power-down modality has been implemented in order
to reduce the power consumption during the silence in the speech
signal. For this purpose, an external signal (COMPUTE), con-
trolled by a voice detector is provided. The power reduction in
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Figure 3: Chip block diagram

sleepingmode is about 50%. The need for a partial power-down is
due to the fact that the autocorrelation coefficients must be still
computed in order to promptly react to a new voice command
when issued.

The clock frequency in the ACF unit is the speech sampling
frequency (8khz), while in the LPCCEP unit the clock frequency
is 32khz that gives 256 clock cycles per frame. These clocks are
derived from a 64khz external clock signal.

4. IMPLEMENTATION AND RESULTS

The chip has been implemented using a three-metal, 0.5�m CMOS
Sea of Gates technology. The chosen power supply is 0.9V which
is less than the sumVTN + jVTP j. Hence, no short-circuit power
is dissipated even when very slow commutations occur. The mea-
sured power consumption of the chip at the nominal operation fre-
quency of 64kHz is 30�W at 0.9V. Chip measurements are re-
ported in Fig. 4.
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Figure 4: Measured power consumption vs. voltage supply.

The presented unit has been used to evaluate how the proposed
set of features compares with conventional approaches in recogni-
tion accuracy. The recognition system is based on a pattern match-
ing approach. Classification relies on a Dynamic Time Warping



time alignment procedure based on L2 distance [3]. Tests of the
recognition system have been based on “TI 46 Isolated Word Cor-
pus”, in particular a set of 20 words (digits and commands) has
been used.
The best recognition rates for our recognition system have been
reached using an LP filter of order 12 to compute 11 cepstral co-
efficients on 12BQ speech signal and using a filter of order 16 to
compute 15 cepstral coefficients in the case of 1BQ speech. In both
cases signal is preemphasized before sampling. Words have been
automatically endpointed. In a multi-speaker (8 speakers) task,
recognition rate is99:5% when using features derived from 12BQ
speech signal and98:9% for 1BQ speech signal derived cepstrum .
Recognition rate becomes99% and97% respectively when white
noise at 10dB SNR is added to all the utterances in the database
before training and classification.

Process Technology: 3-metal, 0.5�m CMOS SoG
Number of MOST: 100,000
Threshold Voltages: VTN=0.62V, VTP =-0.64V
Operating Conditions: VDD=0.9V, fclk=64kHz
Power Consumption: 30�W (150�W/MOPS)

Table 1: Chip features

5. CONCLUSION

The design of a VLSI architecture has been described starting from
the algorithmic point of view down to the electrical level. A novel
approach based on 1 bit quantization of speech signal that avoids
full A/D conversion has been adopted. This approach makes the
design of the feature extractor fully digital leaving out a simple
shaping (preemphasis), band limiting analogue filter.

An isolated-word small-vocabulary speech recognizer based
cepstral coefficients from linear predictive analysis of 1 bit quan-
tized speech has been tested. Its recognition accuracy is within 2%
below a system based on linear predictive cepstral features derived
from 12BQ speech signal.

In the authors opinion these results in terms of power consump-
tion show the feasibility of a single-chip speech recognizer in sub-
micron CMOS technology featuring a power consumption in the
range of few hundreds microwatts.
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