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ABSTRACT
The effect of sampling and quantization on frequency estimation
for a single sinusoid is investigated. Cram´er-Rao bound for 1 bit
quantization is derived, and compared with the limit of infinite
quantization. It is found that 1 bit quantization gives a slightly
worse performance, however, with a dramatic increase of vari-
ance at certain frequencies. This can be avoided by using 4 times
oversampling. The effect of sampling when using non-ideal anti-
aliasing lowpass filters is therefore investigated. Cram´er-Rao lower
bounds are derived, and the optimal filters and sampling frequen-
cies are found. Finally, fast estimators for 1 bit sampling, in par-
ticular correlation based estimators, are derived. The paper is con-
cluded with simulation results for 4 times oversampled 1 bit quan-
tization.

1. INTRODUCTION

We consider the classical problem of estimating the frequency,
phase and amplitude of asinglecomplex sinusoid in additive, white
Gaussian noise. Thus, the continuous time observed signal is

x(t) = s(t; �) + v(t); t 2 (�1;1) (1)

s(t; �) = Aei(!t+�)

wherev(t) is continuous time white Gaussian noise (WGN) with
power�2, A, � = [! �]T are the unknown parameters, and! 2
(��; �].

Usually, the signal is processed digitally. In order to do the
digital processing, the signal must be sampled and quantized. In
most cases, analyses of accuracy do not consider this process, al-
though it can considerably influence the accuracy. In this paper we
will consider the influence of sampling and quantization, and in
particular optimization of sampling and quantization with respect
to accuracy and in a trade off with complexity.

Prior to sampling, the signal is transmitted through an ana-
log anti-aliasing filter. We here assume that the signal has been
stationary for so long time prior to the start of the sampling pro-
cess (or that it has a smooth envelope), that we can disregard the
transient response. Thus, if the antialising filter has frequency re-
sponseH(!) and the sampling time isTs the sampled signal is1

x[k] = s[k; �] + v[k]; k = 0; : : : ; N � 1 (2)

s[k; �] = AH(!)ei(!Tsk+�):

The authors’ email: madsen@dic.kjist.ac.kr, ph@s3.kth.se, respec-
tively.

1We denote all quantities associated with the continuous time signal by
(�) and all quantities associated with the discrete time signal by[�].

Herev[k] is additive Gaussian noise, which is not necessarily white.
We will return to the specific characteristics of the discrete time
noise below.

After sampling, the signal is quantized, i.e., rounded to one
of a finite number of levels. If the quantization is very fine, e.g.,
12 bits precision, the quantization can be disregarded or treated as
another source of additive noise. However, some applications deal
with very high frequency signals (Giga Hertz range) and fine quan-
tization is impossibly or economically infeasible. We therefore
consider coarse quantization, in particular single-bit quantization,
with a signal given by,

x+[k] = sign(<(x[k])) + isign(=(x[k])); k = 0; : : : ; N � 1:
(3)

Apart from being simple to implement, 1 bit quantization also has
the advantage that no gain control is needed and, as we will see
below, that very efficient algorithms for processing of one bit sam-
ples can be made.

The classical case is the case with infinitely fine quantization,
ideal low-pass antialising filters, andTs = 1. In this case, the
Fisher information matrix for the unknown parameters� = [! �]T

is given by [4]

I(�) = 2
�
A

�

�2 N�1X
k=0

�
k2 k
k 1

�
; (4)

which can be explicitly summed and inverted to give the Cram´er-
Rao bound (CRB)

CRB(!̂) =
6�2

A2N(N2 � 1)
: (5)

Furthermore, the maximum likelihood estimator (MLE) can be im-
plemented by finding the maximum peak of the DFT ofx[k] [4].

2. CRAMÉR-RAO BOUND FOR ONE-BIT
QUANTIZATION

At first we will consider the case of ideal low-pass anti-aliasing
filters and one bit quantization. Letr[k] = <(x+[k]) ands[k] =
=(x+[k]). The pdf ofr[k] is then given by

fr[k](q; �) =
1p
��

Z 1

0

exp
�
� 1

�2
(x� qA cos(!n+ �))2

�
dx

(6)
whereq = �1. We get a similar expression for the pdf ofs[k],
just with sin instead ofcos. Notice that this pdf is (continuously)
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Figure 1: CRB as a function of frequency (!
2�

) and SNR

(10 log( 2A
2

�2
)) for N = 32 samples. The lower surface is for no

quantization, while the upper surface is for 1 bit quantization.

differentiable with respect to�, and the CRB does therefore indeed
exist. Since the variablesr[k] are i.i.d. the Fisher matrix due to
r[k] can be found as

I
r(�) =

NX
k=1

X
q=�1

1

fr[k](q; �)

@fr[k]
@�

(q; �)
@fr[k]
@�

(q; �)T ; (7)

with a similar expression forIs(�) due tos[k]. Sincer[k] ands[k]
are uncorrelated, the total Fisher matrix is

I(�) = I
r(�) + I

s(�): (8)

Calculating this with the help of Maple, we get the following ex-
pression when the unknown parameters are� = [! �]T

I(�) = 2
2

�

�
A

�

�2 N�1X
k=0

�
k2 k
k 1

�
�(!k+ �;A; �) (9)

where

�(';A;�) =
exp

�
�2
�
A
�

�2
cos2 '

�
1� erf2

�
A
�
cos'

� sin2 '

+
exp

�
�2
�
A
�

�2
sin2 '

�
1� erf2

�
A
�
sin'

� cos2 ': (10)

In contrast to the ideal case, the Fisher matrix and CRB cannot
be summed explicitly to give a closed form formula. However,
when comparing with (4) we can still reach some conclusions. The
formulas differ by the factor2

�
and the function�(';A; �). It can

be proven that�(';A; �) < 1 so that we can conclude that the
CRB for 1 bit quantization is at least�

2
� 1:6 larger than for no

quantization. Furthermore�(';A; �) is strongly varying with'
with a periodicity of�

4
, so that we can also expect the CRB to be

strongly dependent on frequency and phase with a periodicity of
�
4

.
Figure 1 shows a plot of the CRB forN = 32 samples as a

function of frequency and SNR. The CRB is also dependent on

the phase, but as it is a reasonable assumption that the phase is
a uniform random variable, the CRB has been averaged over the
phase.

As can be seen the CRB has a catastrophic increase around
multiples of �

4
of !, where in fact the varianceincreaseswith in-

creasing SNR. The only way to avoid these critical frequencies is
to make sure that the frequencies of interest are between these crit-
ical frequencies, i.e., by oversampling the continuous time signal
by at least a factor of 4.

3. SAMPLING OF CONTINUOUS TIME POLE-ZERO
FILTERS

As was shown in the previous section, when using coarse quan-
tization it is necessary to oversample the signal in order to avoid
the variance increase at certain frequencies. It is therefore also
necessary to consider the actual anti-aliasing filters used prior to
sampling. Here we will only consider Butterworth filters [2] of
ordern with

S(s) = H(s)H(�s�)� = 1

1 +
�

s
2�fc

�2n : (11)

The continuous time WGN processv(t) is transmitted through
the filterH(s), with outputv0(t). The processv0(t) then is a Gaus-
sian random process with spectrumS(s) and correlation function
R(t). Denote the poles ofS(s) by p1; : : : ; p2n. The process
v0(t) is sampled equidistantly with sampling intervalTs = 2�

!s
,

giving the discrete time noisev[k]. It is clear that the correla-
tion function ofv[k] is the sampled correlation function ofv0(t),
R[k] = R(kTs). We can therefore find the spectrum ofv[k] by
residue calculus (or partial fraction expansion),

S[z] =

2nX
i=1

Res

�
S(pi)

1

1� exp(piTs)z�1

�
: (12)

We can also modelv[k] as a discrete time regular process, by
finding the minimum phase factorH[z] of S[z] = H[z]H[1=z�]�,
i.e., isolating the zeros inside the unit-circle. We hereby find that
v[n] is an ARMA(n; n � 1) process. Except for order 1, it is im-
possible to find closed form formulas, but the ARMA coefficients
can be found numerically in, e.g., MATLAB.

4. EFFECT OF SAMPLING

The Fisher information matrix for a signal in non-white Gaussian
noise is given by [3]

Jij = 2<
�
@s(�)

@�i

H

R
�1 @s(�)

@�j

�
(13)

where in this caseR is the correlation matrix of the noise,v[k],
s = [s[0; �]; : : : ; s[N � 1; �]]T , and the derivatives are,

@s

@!
[k; �] = AH 0(!)ei(!Tsk+�)+iTskAH(!)ei(!Tsk+�);(14)

@s

@�
[k; �] = iAH(!)ei(!Tsk+�): (15)

Notice that sincev[k] is a stationary random process,R is a sym-
metric, Toeplitz matrix and the Levinson-Durbin algorithm can be



used for calculatingR�1. With oversamplingR is close to sin-
gular, and we found that a direct calculation ofR

�1 in MATLAB
was unstable, whereas Levinson-Durbin was stable2.

The Levinson-Durbin algorithm can also be used for calcu-
lating approximate and asymptotic CRB, see [7], where also the
MLE is derived.

5. OPTIMIZATION OF SAMPLING

There are a number of parameters related to sampling that influ-
ence the variance: the ordern of the Butterworth filter, the cutoff
frequency!c of the Butterworth filter, and the sampling frequency
!s. Ordinarily, if !m is the maximal signal frequency, these fre-
quencies are chosen heuristically so that!m < !c < !s=2. We
have instead optimized these frequencies to minimize the variance
of the frequency estimatê!. In general, the variance may be fre-
quency dependent because of aliasing, and we will therefore min-
imize

CRB[!c; !s] = max
!

CRB(!̂)[!; !c; !s]:

There are two different scenarios to be considered, with different
solutions.

First, if the signal is given in a certain time intervalT , the op-
timal solution is of course to let the sampling frequency!s tend
towards infinity, since aliasing will then totally be eliminated. The
number of samples taken during the time interval and the compu-
tational complexity will therefore also tend towards infinity, and
thus the optimum sampling frequency is a trade off between vari-
ance and complexity. Then, for a given sampling frequency, we
can optimize the variance with respect to!c.

On the other hand, suppose that the number of samples is
fixed, typically a power of two considering FFT processing. If
the sampling frequency is increased the total timeT spanned by
the samples is decreased, and as the variance is approximate pro-
portional toT�3, this increases the variance considerably. Thus,
in this case there will be an optimal set(!s; !c), where we expect
!s to be close to2!m

In both cases the optimization cannot be performed analyti-
cally, and we therefore calculatedCRB(!c; !s) for different val-
ues of!c and!s and optimized by grid search. The results can be
seen in Table 1.

6. CORRELATION BASED ESTIMATORS

The autocorrelation sequence (ACS) ofx[k] in (2) is given by (for
Ts = 1 andH(!) = 1)

rm = Ex[k]x�[k �m] = A2ei!m + �2�m;0: (16)

From (16) it is evident that information about the frequency is
gathered in the phase ofrm form 6= 0. From datafx[0] : : : x[N�
1]g the unbiased estimate of the ACS is

r̂m =
1

N �m

N�1X
k=m

x[k]x�[k �m]; m = 1; : : : ; N � 1 (17)

2Notice that the standard LEVINSON algorithm in MATLAB does not
use the Levinson-Durbin algorithm but LU factorization, and is therefore
no more stable than direct calculation ofR�1.

Table 1: Optimal sampling and filter frequencies for a Butterworth
filter of order 4. In the first part, the sampling frequencyfs and
the filter cut-off frequencyfc were simultaneously optimized. In
the second part,fs was fixed at 1.5. In the last part the signal was
oversampled 4 times, i.e. the actual number of samples taken was
4N ; fc was fixed at0:42. The CRB is relative to the CRB for the
ideal case.

Optimal sampling fs = 1:5 fs = 4:4
N fs fc CRB fc CRB CRB
8 1 0.60 1.7 0.47 2.8 0.8
16 1 0.60 1.9 0.47 3.1 1.0
32 1.12 0.48 1.9 0.47 3.2 1.2
64 1.10 0.43 1.8 0.47 3.3 1.2
128 1.10 0.39 1.7 0.50 3.3 1.3

Table 2: Correlation based frequency estimators.� and�m-values
for differential implementation according to (19).

� �m
Delta functionVm=�m;M

1
M

1
RectangularVm=1 2

M(M+1)
(M+1�m)

LinearVm=m 3
M(M+1)(2M+1)

M(M+1)�m(m�1)

(and r̂�m = r̂�m). A general frequency estimator based on the
sequencefr̂1; : : : ; r̂Mg can be written as weighted average of the
phase angles of̂rm, that is

!̂ =

PM

m=1
Vm 6 [r̂m]PM

m=1
Vmm

: (18)

whereVm is a weighting function, and6 [�] denotes the phase an-
gle. The variableM (1 � M � N � 1) roughly determines the
trade-off between numerical complexity and statistical accuracy.
For M = 1 the estimator (18) reduces tô! = 6 [r̂1], an esti-
mator known as the linear predictor frequency estimator, but also
known as Pisarenko’s harmonic decompositor. In literature, some
specific weighting functions have been considered, for example
the delta functionVm = �m;M [1], uniform Vm = 1 and linear
Vm = m [5]. For M > 1 a direct implementation of (18) has
to be combined with some phase unwrapping procedure. Alterna-
tively, the estimator (18) can be rewritten in differential form. Let
�̂(m) = 6 [r̂mr̂

�
m�1], m = 1; : : : ;M . Then, (18) can be written

as

!̂ = �

MX
m=1

�m�̂(m): (19)

Some� and�m for different weighting functions are listed in Ta-
ble 2. See [7] for details.

The asymptotic error variance of (18) (or (19)) is a function of
N and SNR, but also depends on the windowVm and the number
of correlationsM . The following result holds true.

var[!̂] =
1

S3(M;Vm)2

�
S1(M;Vm; N)

SNR
+
S2(M;Vm; N)

2SNR2

�
;

(20)



where var[!̂] denotes the asymptotic error variance, and

S1(M;Vm; N) =

MX
m=1

MX
n=1

VmVnmin(m;n;N�m;N�n)
(N �m)(N � n)

;

S2(M;Vm; N) =

MX
m=1

V 2
m

N �m
; (21)

S3(M;Vm) =

MX
m=1

mVm:

The proof of (20)-(21) follows the step of the proof in [5] where
var[!̂] for the special caseVm = m was derived. The details are
omitted in the interest of brevity.

For one-bit quantized data it no longer holds thatr̂m ' rm.
For largeN and small SNR it holds, [1]

r̂m '
�

2 m = 0
4
�

SNRei!m m = 1; : : : ;M
: (22)

Thus the correlation based estimator provide approximately unbi-
ased estimates for SNR slightly above their SNR-threshold. In the
medium SNR region, the error variance is approximately given by
(20)-(21) and the transformation SNR! 2

�
SNR.

For large SNR the estimate no longer will be unbiased. An
expression for the asymptotic bias (as SNR!1) is derived next,

bias[!̂] = lim
SNR!1

[!̂ � !]

=

PM

m=1
Vm limSNR!1 6 [r̂mr

�
m]PM

m=1
Vmm

: (23)

One can show that, [7]

lim
SNR!1

6 [r̂mr
�
m] = 6

"
N�1X
k=m

z[k]z�[k �m]

#
(24)

wherez[k] = [ei(!k+�)]+e
�i(!k+�) .

7. IMPLEMENTATIONAL ASPECTS OF CORRELATION
BASED 1 BIT ESTIMATORS

The advantage of using 1 bit sampling and correlation based es-
timators is that the correlation can be calculated very simply by
xor’ing x = [x[1]; : : : ; x[N � 1]]T with a shifted version of itself,
and counting the number of ones. The phase angle calculation can
be done using table lookup (if 32 1 bit samples with 4 times over-
sampling is used (in total 256 samples for real and complex part),
all values ofr̂m can be represented by 8 bits for the real/complex
part, and a table with 64k words is needed). This part of the pro-
cessing can be done in dedicated hardware. The phase unwrapping
and multiplication byVm can be done in software on a DSP. Fur-
ther aspects on efficient implementation can be found in [7].

8. SIMULATION RESULTS

Figure 2 shows the variance of the frequency estimate for different
estimators as a function of the frequency forN = 32 samples.
For the FFT based estimator we used 4 times zeropadding, and
peakfinding by triple Gaussian interpolation, while the correlation
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Figure 2: Variance versus frequency forN = 32 and SNR=12
dB. The results for 4 times oversampling were obtained with a
Butterworth filter of order 4 with a cutoff at 1. The number of
ensembles for each frequency was 10000 with random phase.

based estimator used the parabolic windowVm = m(N � m)
and M = N � 1, that is� = 2=(N2 � 1)N2 and �m =
(N2 � 1)N � (m� 1)m(3N � 2m+ 1), [6]. It can be seen that
there is a good agreement between the CRB and the FFT for 1 bit
sampling (which is not the exact MLE for 1 bit sampling). To avoid
the variance peaks, the input was then 4 times oversampled. The
sampling frequency was 4.4 and the signal was frequency shifted
0.55 prior to sampling in order to make all frequencies between
two variance peaks, and a 4th order Butterworth filter was used,
with cutoff 1.0. It can be seen that the variance peaks are then
completely avoided, and furthermore the general variance level is
much reduced and almost reaches the case of no quantization (the
fraction is less than�

2
).
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