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ABSTRACT

Conventional speaker-independent HMMs ignore the speak-
er di�erences and collect speech data in an observation s-
pace. This causes a problem that the output probability
distribution of the HMMs becomes vague so that it deteri-
orates the recognition accuracy. To solve this problem, we
construct the speaker subspace for an individual speaker
and correlate them by o-space canonical correlation anal-
ysis between the standard speaker and input speaker. In
order to remove the constraint that input speakers have
to speak the same sentences as the standard speaker in the
supervised normalization, we propose in this paper an unsu-
pervised speaker normalization method which automatical-
ly segments the speech data into phoneme data by Viterbi
decoding algorithm and then associates the mean feature
vectors of phoneme data by o-space canonical correlation
analysis. We show the phoneme recognition rate by this
unsupervised method is equivalent with that of the super-
vised normalization method we already proposed.

1. INTRODUCTION

Speaker-independent HMMs are widely used in large vocab-
ulary continuous speech recognition. The HMMs are usual-
ly constructed using various kinds of speech data spoken by
many speakers. This causes a problem that the probabili-
ty distribution of the HMMs becomes at and then causes
recognition errors.

This atness is explained in Fig.1. The speech data of the
speaker A locates in his own subspace where his phoneme
characteristics are well represented. On the other hand,
the speech data of speaker B locates in his subspace dif-
ferent from the speaker A. However, conventional speaker-
independent HMMs ignore the speaker subspaces and col-
lect speech data of phonemes in an observation space.

To solve this problem, the individual speaker subspace
should be constructed using his own speech data and con-
sequently speaker normalized phoneme data should be pro-
duced by projecting the speech data to his own subspace.
Speaker-independent HMMs can be trained by collecting
the speaker normalized phoneme data.

From this view point of speaker normalization, we have pro-
posed the method to correlate two subspaces of di�eren-
t speakers based on canonical correlation analysis [1], [2].
This method was originally proposed by K.Choukri [3] as
speaker adaptation method in word recognition using DP
matching. Their problem is that the subspaces of two dif-
ferent speakers are newly created depending on the pair of
speakers. This is inconvenient in extending their method to
the speaker-independent HMMs because the HMMs have to
be newly created depending on the pair of speakers.

To solve this problem, we have proposed CLAFIC canonical
correlation analysis [2]. It creates the subspace of the stan-
dard speaker A by CLAFIC (Class featuring information
compression) method at �rst and then creates the subspace
of the input speaker B by canonical correlation analysis. In
this way, speech data of many speakers can be normalized
to the subspace of the standard speaker A.

The essential problem of the canonical correlation analysis
is that it requires the speech data of the same sentences
between the standard speaker A and the input speaker B
to correlate their subspaces. In this sense, it can be called a
supervised speaker normalization method. If we can get rid
of this requirement, the input speaker B can be normalized
to the standard speaker A by talking any sentences or words
to a recognition system. In this sense, this method can be
called an unsupervised speaker normalization method.

In this paper, we propose the unsupervised speaker nor-
malization method which allows any speakers to talk any
sentences or words in normalization process. We show the
experimental results of the unsupervised normalization in
phoneme recognition by comparing with the supervised nor-
malization method. As a surprising result, we found that
the accuracy of our new method is almost equivalent with
that of the supervised method.

2. SUPERVISED NORMALIZATION

2.1. Canonical Correlation Analysis

As shown in Fig.1, we observe speech data XA of the stan-
dard speaker A and speech data XB of the input speaker
B in an observation space. The speech data is a sequence



Subspace of
  speaker A

Subspace of
  speaker B

Observation  space

Figure 1: Observation space and speaker subspace

of spectral feature vectors xAt and xBt obtained at time t
by short time spectral analysis. We denote the speech data
XA as a matrix whose row is a spectral feature vector xTAt,
(1 � t � M). The column of the matrix corresponds to
frequency i, (1 � i � N).

A well known method of speaker normalization and adapta-
tion is canonical correlation analysis[2][3]. The step of the
canonical correlation analysis is summarized as follows;

STEP(1) Feature vectors in spoken sentences are matched
by dynamic programming (DP) between the standard
speaker A and the input speaker B, then the matched
speech data XA and XB are obtained.

STEP(2) XA and XB are decomposed as XA = QR and
XB = PS respectively by QR-decomposition.

STEP(3) 
 = QTP is computed and eigenvectors v0Ai
with the large eigenvalues are obtained by eigenvalue
decomposition of the 

T . In the same way, eigen-
vectors v0Bi are obtained by eigenvalue decomposition
of the 
T
. The axis vAi = R�1v0Ai of the standard
speaker A and vBi = S�1v0Bi of the input speaker B
are computed. In this way, the second and the more
higher order axes of two speaker's subspaces are ob-
tained.

2.2. O-space Canonical Correlation Analysis

The canonical correlation analysis has a problem that the
HMMs must be re-trained when a pair of speakers are
changed, because the subspaces of a pair of speakers are
simultaneously produced by the canonical correlation anal-
ysis.

To solve this problem, we have proposed O-space canonical
correlation analysis in which the subspace of the standard
speaker A is �xed to an observation space. Then the sub-
space of the input speaker B is produced as to maximize
the correlation of the subspace axes between speaker A and
B. The step of the O-space canonical correlation analysis
is summarized as follows;

STEP(1) Feature vectors in spoken sentences are matched

by dynamic programming (DP) between the standard
speaker A and the input speaker B, then the matched
speech data XA and XB are obtained.

STEP(2) Orthonormal bases VA of the standard speaker
A is �xed to the axes of the observation space.

STEP(3) The axis vB of the input speaker B is computed
as follows in the way of maximizing the correlation
between the axes vA and vB using speech data XB.

vB =

p
C��1
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�21vAp

vT
A
�12�

�1

22
�21vA

(1)

where �12 and �21 are the cross-covariance matri-
ces between matched speech data XA and XB in an
observation space. The �22 and C are the auto-
covariance matrix of the matched speech data XB

and the variance on the axis vA respectively.

3. UNSUPERVISED NORMALIZATION

3.1. Problems in O-space Canonical Correlation
Analysis

The O-space canonical correlation analysis described in the
previous section has the following two problems;

(1) Association of two spoken sentences by DP frequent-
ly fails, if the duration di�erence between them is
longer than some threshold. This causes the degra-
dation of speaker normalization accuracy of O-space
canonical correlation analysis. To solve this prob-
lem, phonemes in two spoken sentences should be
well associated. The easiest way is to use the word
association in stead of sentence association. But it
causes the degradation of speaker normalization ac-
curacy because the normalization is not carried out
using continuous speech. We need association of two
spoken sentences without DP.

(2) Input speaker B has to speak the same sentences as
the standard speaker A spoke because the dynamic
programming (DP) is required to associate two spo-
ken sentences in O-space canonical correlation anal-
ysis. This causes so much troublesome for the input
speaker B. To solve this problem, canonical corre-
lation analysis without DP should be required. If
achieved, the input speaker B can speak any kinds of
sentences. This type of speaker normalization can be
called unsupervised speaker normalization.

3.2. Principal of Unsupervised Normalization

As one of the methods to avoid the dynamic programming,
we apply Viterbi segmentation to the speech data spoken
by the input speaker B using speaker independent phoneme
HMMs. The segmentation of the speech data spoken by
the standard speaker A is carried out by hands because the



standard speaker is �xed so that hand segmentation is done
only once and causes no hard work.

After the segmentation, the phoneme representative vectors
are computed by averaging the segmented phoneme data.
Then the canonical correlation analysis is carried out using
the phoneme representative vectors which are associated
between the standard speaker A and the input speaker B.
We call this method unsupervised speaker normalization
because the input speaker B can speak any sentences and
the dynamic programming is no more used.

3.3. Procedure

The procedure of unsupervised speaker normalization which
we propose in this paper can be summarized as follows;

STEP(1) Speech data of the standard speaker A and the
input speaker B are prepared. The sentences spoken
by the input speaker B is called normalization da-
ta. The sentences spoken by speakers A and B are
di�erent.

STEP(2) The normalization data spoken by speaker B is
segmented into phoneme sequence by Viterbi algo-
rithm using speaker independent HMMs. The speech
data of the standard speaker A is segmented by hand-
s into phoneme sequence. Then the representative
(mean) vector of each phoneme data is computed.
Using the associated pair of mean vectors of phoneme
data between the speaker A and B, the covariance
matrices �12, �21 and �22 are computed.

STEP(3) The subspace of the standard speaker A is �xed
to the observation space. The subspace axis vB of
the input speaker B is computed by Eq.(1) de�ned
at O-space canonical correlation analysis using �12,
�21 and �22 computed at STEP(2). The normalized
speech data of the input speaker B is obtained by
projecting the speech data into his subspace.

STEP(4) HMMAs are computed using the speech data
of the standard speaker A. The normalized speech
data of the input speaker B is recognized using the
HMMAs.

In this paper, we show experimentally the e�ectiveness of
this unsupervised speaker normalization method using o-
space canonical correlation analysis, by comparing with the
supervised normalization method.

4. NORMALIZATION RESULT

4.1. Analysis and Database

We carried out phoneme recognition experiments for mul-
tiple speakers by supervised or unsupervised normalization
using O-space canonical correlation analysis. The number
of phonemes is 46 kinds. The experimental condition in the
analysis and training is shown in Table1.

Table 1: Experimental condition
(AA:Acoustical Analysis)

Sampling frequency 12kHz
High-pass �lter 1� 0:97z�1

A Feature parameter LPC cepstrum(16th)
A Frame length 20ms

Frame shift 5ms
Window type Hamming window

H Number of states 5 states 3 loops
M Covariance matrix Diagonal
M Type Mixture densities HMM

Number of Mixture 4

Table 2: Database used for speaker normalization

Standard speaker MTK
MHO, MMY, MHT, MSH,

Input speaker MYI (male)
FYM, FTK, FKS, FKN (female)
Even numbered 75 sentences from

Normalization data ATR phoneme balanced set a,h,i
(150 sentences)

HMM training data
Initial training: Normalization data of MTK
Concatenated : 500 sentences of MTK from
training ATR phoneme balanced set a-j

Odd numbered 75 sentences from
Recognition data ATR phoneme balanced set a,h,i

of input speakers

Table2 shows the database used for speaker normalization.
The speech data used is ATR phoneme balanced sentence
set which includes 10 speakers and 500 spoken sentences
for each speaker. Standard speaker is �xed to MTK. Input
speakers are �ve males and four females. Speaker normal-
ization was carried out using 75 sentences. The phoneme H-
MMs were constructed using 500 sentences spoken by MTK.

75 sentences were projected to the speaker subspace and
resulted in speaker normalized data. They were recognized
by the phoneme HMMs of MTK.

4.2. Experimental Speci�cation

We carried out six experiments shown in Table3. No-norm
indicates that phoneme data included in the 75 sentences
spoken by 9 speakers were recognized using phoneme HMMs
of the speaker MTK without speaker normalization. Sv-

norm indicates that supervised normalization proposed in
[2] was carried out for the recognition data.

The experiments of Usv1-same, Usv2-same, Usv1-di� and
Usv2-di� are the unsupervised normalization proposed in
this paper. Usv1-same and Usv2-same indicate that speak-
er normalization was carried out using the same sentences
spoken by the standard speaker and the input speakers. On
the other hand, Usv1-di� and Usv2-di� indicate that speak-
er normalization was carried out using di�erent sentences.



Table 3: Experimental speci�cation

No normalization Normalization
Supervised Unsupervised

Labeling Sentences
Manual Viterbi Same Di�erent

No-norm 

Sv-norm 

Usv1-same  

Usv2-same  

Usv1-di�  

Usv2-di�  

In this experiment, even numbered 75 sentences from seven
kinds of three combination sets such as b,c,d set and c,d,e
set were used as normalization data for nine input speakers.

In the experiments of Usv1-same and Usv1-di�, speech data
spoken by the standard speaker was manually segmented in-
to phoneme data. On the other hand, in the experiments of
Usv2-same and Usv2-di�, speech data spoken by the stan-
dard speaker was automatically segmented into phoneme
data using Viterbi decoding algorithm. In this case, con-
ventional speaker independent HMM was employed for seg-
mentation.

4.3. Experimental Results

The experimental results are shown in Table4 and Table5.
From the Table4, we can say that unsupervised normaliza-
tion shows almost the same recognition rate as the super-
vised normalization. The reason is that all the feature vec-
tors do not contribute to correlate two subspaces between
the standard speaker and the input speaker because the
speech data between successive two phonemes are unstable.
On the other hand, the representative (mean) vectors are
stable so that it contributes to correlate two subspaces. As
a result, Usv2-same improved the phoneme recognition rate
by 12.7% in total compared with no normalization.

From the Table5, we can say that di�erent sentences used
as normalization data decreases the phoneme recognition
rate a little. As a result, Usv2-di� improved the phoneme
recognition rate by 11.6% in total compared with no nor-
malization.

Table 4: Averaged phoneme recognition result(%)
(using same sentences as normalization data)

Male Female Total
No-norm 50.2 36.9 44.3
Sv-norm 59.0 60.0 59.6
Usv1-same 57.7 60.0 58.7
Usv2-same 56.2 58.1 57.0

Table 5: Averaged phoneme recognition result(%)
(using di�erent sentences as normalization data)

Male Female Total
Usv1-same 57.7 60.0 58.7
Usv2-same 56.2 58.1 57.0
Usv1-di� 54.7 57.5 56.0
Usv2-di� 54.9 57.2 55.9

5. CONCLUSION

We described the unsupervised speaker normalization
method based on the o-space canonical correlation analy-
sis of the normalization data between standard speaker and
input speaker. In stead of dynamic programming for asso-
ciation of all the feature vectors, we employed HMM based
Viterbi decoding algorithm and associated the mean feature
vectors of phoneme data. The phoneme recognition result
showed this unsupervised normalization is almost equiva-
lent with the supervised normalization we already proposed.
The future works are to increase the number of represen-
tative vectors of phoneme data and to improve the HMM
based Viterbi decoding.

6. REFERENCES

[1] Y.Ariki, S.Tagashira and M.Nishijima, \Speaker Recog-
nition and Speaker Normalization by Projection to S-
peaker Subspace," ICASSP96, pp.319-322, 1996.

[2] Y.Ariki and S.Tagashira, \E�ectiveness of Speaker Nor-
malized HMM by Projection to Speaker Subspace", I-
CASSP97, SPCH8L.10, pp.1051-1054, 1997.

[3] K.Choukri G.Chollet Y.Grenier, \Spectral transforma-
tions through Canonical Correlation Analysis for speak-
er adaptation in ASR," ICASSP86, pp.2659-2662, 1986.


