
INTELLIGENT QUERY AND BROWSING INFORMATION RETRIEVAL (IQBIR) AGENT

Jong-Min Park

Department of Electrical and Computer Engineering
University of Wisconsin - Madison

1415 Engineering Drive
Madison, WI 53706-1691 USA

ABSTRACT

Reported in this paper is an intelligent agent that aids users
to conduct efficient Internet Web information retrieval through
query formulation, information collection, information clus-
tering, and analysis. The underlying mechanism is a proba-
bilistic Sample-at-the-boundary learning algorithm for clus-
tering the search results and learning and matching the user
concept. Kohonen’s “windowed” Learning Vector Quanti-
zation algorithm is shown to be related to this Sample-at-
the-boundary learning algorithm. A prototype system has
been developed and evaluation has been conducted.

1. INTRODUCTION

Due to the tremendous popularity and growth of the het-
erogeneous information on the Internet that is dynamically
increasing ([4]), it is difficult to index and categorize the
Internet documents efficiently to speed up searching and
browsing by broad spectrum of users for newly generated
concepts and interests. This is apparent as the internal rep-
resentation of the information retrieval systems may not al-
ways match the user’s concept of interest, thus requiring
several cycles of query and possibly user feedback to match
the retrieved results to the user’s concept of relevance.

Some of the related works in closing the gap between
the user concept and retrieved documents from dynamically
increasing information, especially on the Internet and the
Web, include intelligent Web browsing agents (e.g. [6]) for
assisting the user to efficiently browse the web pages, meta-
search engines (e.g. [8]) that are interface agents to multiple
search engines and Internet resources, and the user concept
matching for Lotus Notes database ([3]).

In this work, a novel intelligent query and browsing in-
formation retrieval framework is developed to aid in search
and learning of user concept from multiple existing infor-
mation retrieval systems. The framework is applied to ac-
cessing multiple Web search engines in parallel.

The goal of the system is to reduce the number of query
cycle for efficient query and retrieval, learn to match the

Profiles

Documents
Training

(Query,

and Clusters)

User

user interface
module

learning and

module
clustering (search

engines)

systems
Retrieval

User

retrieval

module

Figure 1: Intelligent Query and Browsing System Frame-
work

user concept to increase accuracy in classifying documents
relevant to the user, and aid in the browsing process, by clus-
tering the results and actively learning from user feedback.

In the sections that follow, the intelligent query and brows-
ing framework is described, the underlying probabilistic Sample-
at-the-boundary method ([5]) is formulated, and Kohonen’s
LVQ 2.1 learning algorithm ([1]) is shown to be a special
case of the learning method, followed by evaluation and
conclusion.

2. SYSTEM FRAMEWORK

Figure 1 shows the model of the intelligent query and brows-
ing system, consisting of the following components: User
query and browsing interface module, Information retrieval
module, Clustering and learning module, and User Profile.

The user query interface and the result browsing inter-
face allows access control, query entry, result display, doc-
ument browsing, and user feedback.

The browsing module generates a display of the clusters
generated by the learning and clustering module. The user
may click on a representative cluster from a list of represen-
tatives to show a list of documents within the cluster, and
retrieve full content of a document.



The retrieval module accesses multiple information repos-
itories (web search engines in this case) using a given query
(lists of terms for search engines) and collects the results
of documents or summaries of documents. Documents are
parsed and mapped into training feature vectors for subse-
quent clustering and learning.

The clustering module groups collected documents into
a fixed number of clusters, with a representative document
and a codebook on each cluster.

User relevance feedback are recorded for subsequent on-
line training by the learning module. Feedback may be
given both for the clusters and for individual documents
using one of three labels, “relevant”, “irrelevant”, and the
default “dont’ care”.

Terms that occur together with the query terms in each
cluster are extracted and displayed as suggestions for further
refinement to the query, and possible entry to a personal
thesaurus and a personal list of stop-words.

Each user profile consists of a set of query searches for
interests or concepts to be searched for a user. It contains the
user-supplied initial query, the reformulated query, code-
book clusters, and sample documents for on-line training
and fine-tuning.

3. CLUSTERING AND LEARNING

Documents are collected by querying and retrieving results
from multiple search engines. These search results usually
consist of URL (Universal Resource Locator) and titles of
web pages in a ranked list, including a summary or a contex-
tual content of each web page, which are parsed accordingly
and stored locally.

The documents are represented using the term vector
model with tf-idf weighting (term-frequency inverse doc-
ument frequency weighting) ([7]). Terms are pruned by re-
moving stop-words and stemming. Contextual term weight-
ing is applied, where higher weight is assigned to terms oc-
curring in the title and the URL, while lower weight is given
to terms within the summary or partial context.

To minimize the clustering time, the large dimension-
ality of the term vector space, and the network congestion,
only the title and the summary list from the search engines
are used as documents, while avoiding access to the full
content of the web pages. The length of the vector is limited
to a fixed number of terms having highest tf-idf weights.

Initial collection from a new query is clustered using the
Kohonen’s SOM (Self-Organizing Map, [1]) with a fixed
number of codebooks in a two-dimensional mapping. Doc-
uments with labels from user feedback are used for training
the codebooks using the Sample-at-the-boundary learning
method ([5]).

Subsequent results by additional queries for the same
concept search are classified and clustered accordingly by

the codebooks.

3.1. Boundary Sampling and LVQ 2.1

To re-train the codebooks given the user feedback, the ac-
tive Sample-at-the-Boundary method (theoretical formula-
tion for the method is found in [5]) is applied, where ex-
isting samples are chosen that are near the boundary with
Gaussian probability distribution instead of generating new
samples.

Let the decision boundary satisfy~w� � ~x = w0, where
~w� is the true boundary vector,w0 is the threshold, and~x is
a feature vector.

Given a sample~x(n) chosen near the boundary with the
labely(n), the update of the boundary estimate and the thresh-
old at stepn+ 1 is

~w(n+1) = ~w(n) + �u(y(n))~x(n) (1)

w
(n+1)
0 = w

(n)
0 � �u(y(n)); (2)

whereu(y(n)) = 1 if the labely(n) matches the side pointed
to by the boundary estimate vector~w(n), and�1 otherwise.

The active Sampling-at-the-Boundary learning method
will update each decision boundary locally, thus effectively
fine-tuning the classification by considering one boundary
at a time without the complexity of multiple clusters and
higher dimensions. This is applied to clusters with code-
books by defining each boundary to be a piecewise-linear
hyper-plane at the center of two codebook vectors of differ-
ing label.

Define two codebook vectors of differing class labels,
~c
(n)
A and~c(n)B , as the decision boundary estimate. The next

training sample,~x(n), is chosen near the boundary as de-
scribed later, and has the same class label with either code-
book vector, withu(y(n)) = 1 if the label is the same as
~c
(n)
A andu(y(n)) = �1 otherwise.

The codebook vectors are updated as

~c
(n+1)
A = ~c

(n)
A + �u(y(n))[~x(n) � ~c

(n)
A ] (3)

~c
(n+1)
B = ~c

(n)
B � �u(y(n))[~x(n) � ~c

(n)
B ]: (4)

We now show that this method is related to the active
Sampling-at-the-Boundary method. We also show that LVQ
2.1 is a special case of this learning method.

Current boundary estimate and threshold defined by these
two codebook vectors are

~w(n) = ~c
(n)
A � ~c

(n)
B ; (5)

w
(n)
0 =

1

2
[~c
(n)
A + ~c

(n)
B ] � ~w(n) (6)

and the new boundary estimate and the threshold for the
updated codebooks are thus

~w(n+1) = ~c
(n+1)
A � ~c

(n+1)
B ; (7)



w
(n+1)
0 =

1

2
[~c
(n+1)
A + ~c

(n+1)
B ] � ~w(n+1) (8)

Translating the mid-point between the initial codebooks,

~m
(n)
AB =

1

2
[~c
(n)
A + ~c

(n)
B ];

to be on the origin of the coordinate system, the sample
point~x(n) is translated to

~xt
(n) = ~x(n) � ~m

(n)
AB ;

the vector~w(n) remains the same, and the thresholdw
(n)
0 is

translated tow(n)
t;0 = 0.

Applying equations (3)-(4) to (7)-(8) using the trans-
lated vectors,

~w(n+1) = ~w(n) + �tu(y
(n))~xt

(n) (9)

w
(n+1)
t;0 = w

(n)
t;0 � ��tu(y

(n)): (10)

where�t = 2� and��t = �t � f
1
4 j~w

(n)j2g. Thus it is closely
related to actively updating the boundary estimate in the
equations (1)-(2).

In this particular prototype, samples are chosen near the
boundary with normal probability distribution,

exp(1�r)
2=�2 > U

wherer = distancesmall=distancelarge (distancesmall

anddistancelarge are the distance to the closest codebook
vector and the next closest codebook vector, respectively, as
shown in Figure 2, left), andU is a uniform random variable
in the range[0; 1) (Figure 2, right).

Since the LVQ 2.1 uses a window around the boundary
using the formula

distancesmall=distancelarge > Rratio;

LVQ 2.1 is related to a special case of Sampling-at-the-
boundary method, where samples are chosen from a uni-
form distribution within a window around the boundary es-
timate, in contrast to normal distribution.

4. PERFORMANCE EVALUATION

The system performance is measured using the standardpre-
cision andrecall ratios that is widely used in the informa-
tion retrieval field. The usability performance is measured
by computing thesearch lengthdefined as the number of
“irrelevant” or “don’t care” documents that have been tra-
versed before reaching a certain number of “relevant” doc-
uments.

To compare with existing search engines, a fixed num-
ber of documents (40 documents) from the retrieved list

class 1 codebook

class 2 codebook

sample

LVQ 2.1 Active Sampling
with Probability

x

r R

P(x)

x

r R

P(x)

w ww = decision boundary

P(x) = probability

Figure 2: LVQ2.1 and normal distribution sampling

0:3
0:35
0:4
0:45
0:5
0:55
0:6
0:65
0:7
0:75
0:8

0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9

P
r
e
c
i
s
i
o
n

Recall

Overall Precision-Recall Plot

engine 1 3

3

3

3
3

3 3 3

engine 2 +

+

+ +
+ + +

+

engine 3 2

2
2

2

2 2

2 2meta engine �
�

� � �

� �
�

IQBIR 4

4

4
4

4 4 4 4

Figure 3: Overall Precision-Recall Plot

from each search engine are combined as the full document
space. Three search engines and one meta search engine
are used for comparison. Ten sample query sessions are
recorded for each search engine.

For the IQBIR system, the ranking of documents is as-
sumed to be in the order of traversal of clusters, that is,
documents within the cluster that has been accessed first
are ranked first, and so on. Documents within each clus-
ter are assumed locally ranked. For all other search engines,
including the meta search engine, the single list result is
assumed ranked from top to bottom. The resulting plot is
shown in Figure 3.

Since the existing search engines do not include learn-
ing, the system improvement over time could not be com-
pared. Further work on the evaluation framework for learn-
ing agents will be needed for more objective comparison.

Theexpected search lengthare computed by averaging
over all query sessions for several fixed values of a param-
eter, in this case a number of relevant documents browsed.
The search length here is defined as the number of “irrel-
evant” or “don’t care” documents that had to be traversed
(and also given user feedback) to reach certain number of
“relevant” documents.

The number of documents traversed within each set are
then recorded for each session. These values are averaged



0

5

10

15

20

25

30

35

0 0:5 1 1:5 2 2:5 3 3:5 4

S
e
a
r
c
h

L
e
n
g
t
h

Relevant Document Sets

Overall Expected Search Length

engine 1 3

3
3

3

3 3

engine 2 +

+

+

+ + +engine 3 2

2
2 2

2 2

meta engine �

�

�

�
�

�

IQBIR 4

4 4 4
4 4

Figure 4: Overall Expected Search Lengths

over all query sessions for each set and plotted in Figure 4.
This plot shows the user effort of traversing through the doc-
uments and giving user feedback in terms of search lengths
(the lower the value, the better).

The overall precision-recall plot shows the clustering
system improves upon existing search engines by allowing
the user to only look at the documents within clusters that
are relevant, thus reducing user effort in both browsing and
user feedback required to re-train the system.

The overall search length plot also empirically shows
that the number of traversal and user feedback that needs to
be done are reduced through clustering and learning.

The meta search engine does not improve much as it still
gives a static combined result of multiple search engines.
The meta search engine tested here is an improvement over
other meta search engines that re-ranks the combined result
into another single ranked list. It uses a simple single group
clustering by the terms presented, and several group cluster-
ing by the URL address (geographical location). It still lists
the groups into one long list.

Although not presented as a figure, the “miscellaneous”
group was found to be very useful. In all query sessions
tested, none of the relevant documents fell into the group,
and almost always the documents that were not related to
the initial query were placed in this group. This shows that
many of the search engines’ internal representation and in-
dexing are not quite as trouble-free or consistent as a user
wants. Thus the IQBIR system groups them into a separate
space to reduce user effort of weaving through non-relevant
documents.

5. CONCLUSION

The system in this work aids in the search and learning the
user concept of interest from multiple existing information
retrieval systems, in this case the search engines for the In-
ternet. Clustering and active learning is applied to reduce

the number of user feedback and training and fine-tuning
the clustering classifier to match the user’s concept to the
unknown internal representation of multiple search engines.

The prototype is developed using the Java language for
the main prototype, Javascript, html, and cgi-bin protocol
for the client interface, and C for clustering and learning by
modifying the LVQ/SOM package ([2]).

Some of the novel methods that are addressed in this
work include intelligent learning agent between existing search
engines and the user, reducing manual user feedback and
query cycles by active clustering, and clustering multiple
concepts with representatives during retrieval.

Preliminary tests from the prototype show promising re-
sults in the efficiency and increasing accuracy for searching
and browsing user concepts.

6. REFERENCES

[1] T. Kohonen, “The self-organizing map,”Proceedings of
the IEEE, vol. 78, no. 9, pp. 1464–1480, 1990.

[2] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola,
“Lvq pak: A program package for the correct appli-
cation of learning vector quantization algorithms,” in
Proc. Intl. Joint Conf. Neural Networks, pp. 725–730,
1992.

[3] B. Krulwich, “Learning user interests across heteroge-
neous document databases,” inProc. 1995 AAAI Spring
Symp. Info. Gathering from Heterogeneous, Distributed
Environments, 1995.

[4] H. S. Nwana, “Software agents: An overview,”Knowl-
edge Engineering Review, vol. 11, pp. 1–40, Sep. 1996.

[5] J.-M. Park and Y.-H. Hu, “On-line learning for active
pattern recognition,”IEEE Signal Processing Letters,
Nov. 1996.

[6] M. Pazzani, J. Muramatsu, and D. Billsus, “Syskill &
webert: Identifying interesting web sites,” inProc. 1996
AAAI Spring Symp. on Machine Learning in Informa-
tion Access, 1996.

[7] G. Salton and C. Buckley, “Term weighting approaches
in automatic text retrieval,”Information Processing and
Management, vol. 24, no. 5, pp. 513–523, 1988.

[8] A. F. Smeaton and F. Crimmins, “Using a data fusion
agent for searching the www,” inSixth Int. World Wide
Web Conf., 1997.


