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ABSTRACT

Some new techniques are proposed for estimating the quality of a
noisy image of a natural scene. Analytical justifications are given
which explain why these techniques work. Experimental results
are provided which indicate that the techniques work well in prac-
tice. These techniques need only the images to be evaluated and
do not use detailed information about the formation of the image.
The focus is on the case where the image is only corrupted by ad-
ditive Gaussian noise, which is independent from pixel to pixel,
but some cases with blurring are also considered. These results
should be useful in the process of fusing several images to obtain
a higher quality image. Quality measures of this type are needed
for fusion, but they have not received much attention to date. In
this research, a mixture model is used in conjugation with the
expectation-maximization (EM) algorithm to model edge images.
This approach yields an accurate representation which should also
be useful in other image processing research.

1. INTRODUCTION

A method for estimating the quality of an image is considered here.
Our method involves forming histograms of an edge intensity im-
age. The characteristics of the histogram give information about
the amount of noise added to the image. The edge intensity im-
age is obtained from a Canny edge detection operation [1] by first
convolving the image with a one dimensional mask to find the
edge contributions in both the horizontal and vertical directions.
For analysis purposes, we model the histograms of the edge im-
ages produced by the horizontal and vertical convolutions using a
mixture model [2], where the terms in the mixture are zero-mean
Gaussian probability density functions (pdfs).

The edge intensity image is formed by setting each pixel to the
square root of the sum of the squares of the corresponding pixels in
the horizontal and vertical images. This leads to the histogram of
the overall intensity being modeled by a mixture of Rayleigh pdfs.
The only parameters of the Rayleigh mixture model correspond to
the variances and probabilities of the mixture terms in the origi-
nal Gaussian mixture model. Approximate maximum likelihood
estimates of these parameters are easily obtained directly from
the overall edge intensity image using the EM algorithm [2, 3].
By studying the effects of noise on these parameters, we moti-
vate techniques to estimate the amount of noise and image qual-
ity. For earlier works on noise estimation, the reader is referred
to Olsen [4], who compared the performance of several previously
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suggested methods. The methods we suggest appear to outperform
the methods in [4].

2. HISTOGRAM MODELING

Now we consider, in detail, how we model the histograms used in
our algorithm. Consider a noisy imageI for which

I(h; v) = f(h; v) + n(h; v) (1)

whereI is the observed image,f is the ideal image,n is the noise
and (h; v) denotes a particular pixel. LetI
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the images which result from convolving the imageI with a one
dimensional mask, as specified in Canny’s algorithm, to find the
edge contributions in both the horizontal(x) and vertical(y) direc-
tions. ThusI
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tering ofI. Now let us assume thatI
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ture of Gaussian pdfs as
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In (2) !i is the probability that a random sample comes from the
ith term in the mixture so that

MX
i=1

!i = 1: (3)

For convenience assume the�2i are ordered so that�21 < �22 <
: : : < �2M . The Gaussian mixture model is very powerful and
results exist [5], which imply that this sort of model can accom-
modate any zero-mean, circularly symmetric pdf that is monoton-
ically decreasing inx2 + y2 as long as enough terms are used in
the mixture model. In fact, many studies have shown only 3 or 4
terms are needed to provide a good match to most practical pdfs
[6, 7]. We found the histograms ofI
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decreasing for the images we analyzed. Now consider the edge
intensity imagekrIk =

p
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Y . Under the above assump-
tions the pdf of a pixel fromkrIk can be calculated by using (2)
along with the established mapping theory for pdfs [8] to be
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which is a mixture of Rayleigh pdfs. In practice, we consider the
histogram ofkrIk instead of the pdf in (4). Under the appropri-
ate conditions [8] the histogram provides an good estimate of the



pdf. Thus we assume the histogram ofkrIk can be modeled as
in (4) and we have found this to be the case in all the examples
we considered. The parameters,�i; !i; i = 1; : : : ;M , in (4) are
found using the EM algorithm. A typical example is shown in
Fig.1.
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Figure 1: Histogram ofkrIk and the Rayleigh mixture approxi-
mation. Image: lena.pgm with additive Gaussian noise with stan-
dard deviation 5. Model:M = 3, (�1; �2; �3) = (3.96,6.78,21.53),
(!1; !2; !3) = (0.54,0.36,0.10)

3. NOISE ESTIMATION

Now let us consider the effects of adding noise. Specifically, what
are the changes to!i; �2i ; i = 1; : : : ;M . Thei = 1 term in (4) has
the parameter�21 which is the smallest�2i . Thus this term corre-
sponds to the small fluctuations in the image. Thei = M term in
(4), with the largest parameter�2M , corresponds to strong edges.
Strong edges contain the majority of the information that one is
typically interested in. Suppose we add independent identically
distributed (i.i.d.) zero-mean Gaussian noise samples to each pixel
in the original image.I

0

X andI
0

Y are related to the original image
by two linear filtering operations which each combine pixels that
lie along lines in orthogonal directions. Thus this is approximately
equivalent to adding independent noise samples toI
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Y with
the identical appropriate variance. The new joint pdf ofI
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can be put into the form of (2) by changing�2i to
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where�
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i includes the additive noise and�2 is the variance of the
noise added to bothI
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Y (the noise added in (1) results in
additive noise toI
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X and I
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Y ). The result in (5) can be justified
as follows. The model in (2) says that a random vector (x,y) will
be generated from one of several Gaussian distributions.!i is the
probability that theith Gaussian distribution is used. If Gaussian
noise is added to the original image, then (2) still holds if�2i is re-
placed by�

0
2

i . The reason is that the sum of two Gaussian random
variables is another Gaussian random variable. Now performing
the mapping to obtain the pdf ofkrIk, we find that (4) still holds
provided�2i is replaced by�

0
2

i .
Since�21 for an ideal image is usually very small, we can use
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1 to estimate the variance of additive Gaussian noise.�
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estimated using the EM algorithm. Clearly the accuracy of this
estimation depends on�1 since�

0
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1 = �21 + �2.

Figure 2: The test images

The 17 8-bit512 � 512 gray-level images, shown in Fig. 2,
were used in an experiment to test this procedure. The results are
given in Table 1 for the case withM = 3 in the mixture model.
�n is the standard deviation of additive Gaussian noisen(h; v) in
(1). �̂n is the average, over the set of test images, of the estimated
value of�n. Std(�̂n) is the standard deviation of the estimated
value of�n. In estimating�n we have used the known relation-
ship between�2 in (5) and the variance ofn(h; v) in (1). The
results show that this method tends to over-estimate�n when it
is small. This is because the method also takes the small random
fluctuation in the background of the image as the noise (�1 6= 0
for the image without noise). If we subtract the�̂n estimated with
�n = 0 from each�̂n, the noise estimation would be given by�̂

0

n

in Table 1.Std(�̂
0

n) is the standard deviation of the corresponding
estimate. While, this more accurate estimation is unachievable, it
is instructive since the new estimates are excellent. We note that
the practical estimatê�n appears to perform better than all the
methods discussed in [4]. The comparison is not exact since we
use a larger set of images than were used in [4].

To test the robustness of this method, zero-mean uniformly
distributed noise was also considered. Table 2 shows the exper-
imental results. We found our technique may still provide good
results.

4. QUALITY ESTIMATION

The above method can provide an approximate estimation of the
variance of additive Gaussian noise. A method to directly estimate
the quality, for example signal-to-noise ratio (SNR), of an image
is based on considering the quantity

Q =

1Z
2�

fkrIk(r)dr (6)



�n �̂n Std(�̂n) �̂
0

n Std(�̂
0

n)
0 4.50 2.64 0 0
2 5.03 2.43 1.98 0.26
5 6.79 1.94 4.77 0.29
10 11.00 1.38 9.79 0.28
15 15.59 1.03 14.73 0.36
20 20.21 0.87 19.54 0.65
25 24.85 0.79 24.31 0.55
30 29.55 0.89 29.10 0.68
40 39.12 0.77 38.78 0.53
50 48.74 0.84 48.47 0.69

Table 1: The average and the standard deviation of the additive
Gaussian noise estimation

�n �̂n Std(�̂n) �̂
0

n Std(�̂
0

n)
0 4.59 2.60 0 0
2 5.11 2.42 2.05 0.20
5 6.98 1.86 4.95 0.28
10 11.49 1.11 10.28 0.31
15 16.61 0.79 15.78 0.39
20 21.78 0.75 21.15 0.46
25 26.68 1.09 26.18 0.84
30 31.82 1.01 31.39 0.76
40 42.07 1.04 41.74 0.80
50 51.99 1.07 51.73 0.92

Table 2: The average and the standard deviation of the additive
uniform noise estimation

where� is the mean ofkrIk. In practice, we again approximateQ
using histograms and we calculate� by averaging over the image.
We can show that iffkrIk is described by a nontrivial mixture
as in (4),Q will decrease when i.i.d. Gaussian noise is added.
Thus the value ofQ for the noisy image is always smaller than
the value ofQ for the image without noise. The one exception
is if the signal is Gaussian distributed itself (the requirement is
really that the signal can be modeled with anM = 1 term model
in (2)). In this case the image does not have a structure which is
different from the Gaussian noise so it is reasonable that this case
will cause problems. For the Gaussian signal case, theQ will have
the minimum valuee�� which will not change when we add i.i.d.
Gaussian noise to the image. This is easy to demonstrate by using
the relationship

� =

q
�

2
!1�1 (7)

which holds forM = 1 in (4) as given in equation (5-48), p. 112 of
the 2nd edition of [9]. Upon inserting (7) into (6) and performing
a change of variablesu = r=�1 we obtain an expression forQ
which doesn’t depend on�1 and which evaluates toe��.

We now outline a proof thatQ decreases when i.i.d. Gaussian
noise is added for a nontrivial case withM = 2. Consider the
Gaussian mixture model in (2) withM = 2 and�2 = �1 + �. In
this case we have (using an extension to (7))

Q = !1e

��(!1�1+!2(�1+�))
2
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1 + !2e

��(!1�1+!2(�1+�))
2

(�1+�)
2 (8)

First we show that a Rayleigh distribution forfkrIk(r) leads to
the minimum value ofQ. Computing the derivative with respect

to � we obtain that

dQ

d�
j�=0= 0 (9)

dQ

d�
> 0 for 0 < � <1 (10)

Thus,Q(�) is a monotonic increasing function with minimum value
at � = 0. SinceQ(�) is a monotonic increasing function, we just
need to prove that� will decrease when we add noise. Define�2

such that
�2 = �22 � �21 (11)

where�1 and�2 are the parameters before adding noise. Using
(11) we have (assume� > 0)

� = �2 � �1 =
�2

�2 + �1
(12)

After adding zero-mean i.i.d. Gaussian noise with variance�2,
the parameters of the modified Rayleigh mixture model become
�
0
2

1 = �21 + �2 and�
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2 = �22 + �2 as shown above. Thus, the
new difference
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must be smaller since�2 is unchanged and�
0

2+�
0

1 has increased.
Now sinceQ is monotonic increasing in� it must also decrease.
While the proof given here is forM = 2, a similar proof can be
given forM > 2.

In order to computeQ using a histogram we just count the
number of pixels ofkrIk greater than2� where� is the average
over the imagekrIk. So we actually do not need to use the EM
algorithm here. Only the gradient intensity will be used and thus
the calculation complexity is very low. In order to validate the
utility of theQ measurement, we defineQR as

QR = 10log
10

Q

e��
(14)

and compare it with SNR defined as

SNR = 10log
10

�2f
�2n

(15)

where�2f and�2n are the sample variances of the signal and noise
(the signal is known). We compared (14) and (15) for the images
in Fig 2. The results on all the test images are similar to that shown
in Fig. 3. The results show that it is possible to useQR to judge
the relative quality of two images for fusion.

5. MULTI-SCALE QUALITY MEASUREMENT FOR
NOISY IMAGES

In some applications, such as image fusion and multi-scale image
processing, the SNRs of a set of images at several different scales
are of interest. For example, it may be possible to process an im-
age at a set of different scales. To choose the scale with highest
SNR is then an interesting problem. In addition, noise is not the
only type of degradation of interest. The analysis introduced here
also considers blurring, another degradation which is of interest in
many situations. In some cases, such as image fusion, an objective
measurement of the overall quality of the image is very useful. We
propose using

IQ = �MQ2 (16)



0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Standard deviation of additive Gaussian noise

SN
R

 a
nd

 Q
R

 (d
B)

image: lena.pgm

−−−:  SNR measurement

+++:  QR measurement

Figure 3: The comparison between QR and SNR measurement

If the image was blurred,�M would decrease significantly. At the
same time, the Q will increase a little bit due to the decrease of
noise level. On the other hand, adding noise will mainly influence
Q, while not changing�M much.

To evaluate the suitability of this approach, we compared it
with the SNR measurement in (15). We use a Gaussian smoothing
operation for the blurring process. Suppose the signal in (1) is
known. We convolve the image with a Gaussian kernel

g(h; v; t) =
1

2�t
e
�(h2+v2)

2t (17)

and we compute SNR(t) of the result using (15) at eacht.
Fig. 4 shows one of our experimental results. All curves are

normalized so that the maximum normalizedIQ and normalized
SNR is 1. All of the images we tested, see Fig. 2, provided
similar curves which show that the proposed IQ measurement fits
the SNR measurement quite well. It is possible to generalize (16)
to

IQ = g1(�M)g2(Q) (18)

whereg1 andg2 are two increasing functions. By selectingg1 and
g2 differently, the relative importance of noise and blurring can be
varied. In fact, it might be possible to findg1 andg2 to obtain a
better correspondence betweenIQ andSNR in Fig. 4, but we
have not investigated this further.

6. CONCLUSION

In this paper, we have proposed new techniques to blindly estimate
the quality of an image of natural scene. A Rayleigh mixture den-
sity is used to model the distribution of image edge intensity. The
parameters of the Rayleigh mixture density, which are found using
the EM algorithm, are used for noise and SNR estimation. Ex-
periments on a set of test images show the techniques work well.
Analytical justifications explain why these techniques work. Mod-
eling the distribution of the edge intensity using the mixture model
and using the EM algorithm to find the best mixture model works
extremely well in the examples considered here. This suggests a
new set of tools which we believe can be fruitfully employed in
many other image processing applications.
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Figure 4: Comparison betweenIQ measurement andSNR mea-
surement
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