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ABSTRACT

This paper presents an image restoration technique which uses a
cost function based on a novel image error measure. The cost
function presented here takes into account local statistical infor-
mation of the image when performing restoration. It is shown that
this technique compares favourably with other techniques, espe-
cially when applied to colour images.

1. INTRODUCTION

The restoration of an image degraded in some way is usually
approached in terms of a multidimensional optimisation problem.
Theoretically, a degraded image may be restored by the creation
of an algorithm which minimises a measure of image quality such
as Mean Square Error (MSE). Developing such an algorithm can
be difficult if the nature of the image degradation is complicated
or not completely known. When degraded images are being fil-
tered for the purposes of image segmentation, then the usefulness
of the segmentation obtained from the filtered image provides a
measure of quality. However, often an image is filtered for the
purpose of greater visual quality or clarity as perceived by
humans, such as an old photograph or a television transmission
[1]. In these cases a restoration algorithm is attempting to use
mathematics to produce an image which human beings will find
visually pleasing. For an algorithm to produce an image which
humans will find pleasant it must posses a method of quantifying
an image’s quality which takes into account human visual prefer-
ences.

Classical image error measures such as mean square error or Sig-
nal to Noise Ratio (SNR) compare images on a pixel to pixel
basis, and in effect make statements about the power of the noise
signal created by the subtraction of the two images to be com-
pared. This kind of information is mathematically useful. How-
ever these measures favour slow variations in the image and bear
very little relationship to the manner in which humans view the
differences between two images. Humans tend to pay more atten-
tion to sharp differences in intensity within an image, for example
edges or noise in background regions. Hence an error measure
should take into account the concept that low variance regions in
the original image should remain low variance regions in the
enhanced image, and high variance regions in the original image
should likewise remain high variance regions in the enhanced
image. This implies that noise should be at a minimum in back-
ground regions, where it is most noticable, but noise suppression
should not be as important in highly textured regions where image
sharpness should be the dominate consideration. In this paper we
present a novel image error measure which attempts to quantify
the statistical differences between regions in an image rather than
the differences between individual pixels. This image error meas-
ure is incorporated into a restoration cost function which is used to
restore degraded colour images.

2. THE BASIC RESTORATION MODEL

Consider anN by M input image, and a linear image degradation
model described by the equation [1,2,3]:

(1)

where f and g are lexicographically organised original and
degraded image vectors of lengthNM, respectively,H is a matrix
distortion operator andn is an additive noise vector. In the case of
a colour image, (1) can be assumed to be applied to each colour
plane separately. Vectorsf andg are created by either row or col-
umn scanning the image. The matrixH is an arrangement of the
elements in the degrading point spread function (PSF) such that
equation (1) holds. In the case of spatially invariant distortion,H
has a Block-Toeplitz form. When attempting to deconvolve a dis-
torted image, one method is to minimise an error measure such as
the constrained least square error function:

(2)

where  is the restored image estimate andλ is the constraint fac-
tor. The matrixD is of the same nature asH and acts as a high

pass filter. The first term in the equation is minimised when  is
equal to the original image whereas the second term in (2)
increases in the presence of noise and is minimised for a smooth
image estimate. Hunt and Kubler [2] showed that in general infor-
mation in the different colour planes will be correlated. However,
in this investigation we assume that the correlations are small
enough that each plane may be restored independently and then
brought together for a final result. Equation (2) applies the sameλ
value andD matrix to all pixels in the image and hence a value of
λ large enough to fully suppress noise in the smooth regions of the
image may blur fine details. A great deal of research has been
done into algorithms which minimise (2), [3,4]. However as stated
above, (2) does not take into account the human visual system,
hence a modified cost function would be advantageous.

3. MODIFIED COST FUNCTION

The measurement we introduce is termed Local Standard Devia-
tion Mean Square Error (LSMSE). LSMSE is calculated by com-
paring the local standard deviations in the neighbourhood of each
pixel in the images we wish to compare to each other. The mean
square error between these two standard deviations gives an indi-
cation of the degree of similarity between the two images.

Define the local standard deviation in anA by A neighbourhood of
pixel (x, y) in imagef as:
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(3)

where the local mean of theA by A neighbourhood of pixelf(x, y)
in imagef is defined as:

 (4)

Using the above conventions, we define the LSMSE between two
NxM imagesf andg as:

(5)

LSMSE in effect requires the matching of homogeneous statistical
regions between the two images to be compared. Hence back-
ground regions should remain as noise free as possible and highly
textured regions should not be smoothed by the enhancement pro-
cedure. LSMSE by itself can be used as a measure of image qual-
ity, however the authors wished to investigate modifying (2) to
incorporate a LSMSE-like term.

The new cost function we suggest is given by:

(6)

where  is the variance of the local region surround-

ing pixel (x,y) in the image estimate and  is the

variance of the local region surrounding pixel (x,y) in the
degraded image scaled to predict the variance in the original
image. Note that local variances are used in the cost function
rather than local standard deviations as this simplifies the minimi-
sation of the cost function. If the degraded image has been blurred
then image variances ing will be lower than the corresponding
variances in the original image. In this case the variances

 would be scaled larger than  to

reflect the decrease in variance due the blurring function. In gen-
eral, if we consider an image degraded by a process which is mod-
elled by (1), then we find that a suitable approximation is:

(7)
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where J(x, y) is a function of the noise added to the degraded
image at point (x, y) andK(x, y) is a function of the degrading
point spread function at point (x, y). Although it may appear diffi-
cult to accurately determine the optimal values ofK(x, y), the
algorithm is extremely tolerant of variations in this factor and only
a rough guess is required. This is due to the fact that the LSMSE
term in (6) has it’s greatest effect on the low variance background
regions of the image where noise is the most noticable. In such

regions  merely has to be small to suppress noise

since details are not noticable. In highly textured regions of the
image where the preservation of image details are most important,
the LSMSE term requires that the variance of the region be large,
and the first two terms of (6) ensure the sharpness and accuracy of
the image features.

The first step in the development of the algorithm is a change in
notation. For anN by M image letf represent the lexicographically
organized image vector of lengthNM as per the model given by
(1). Consider setting all pixels in vectorf to zero except those
which are in the two dimensionalA by A neighbourhood of pixeli.

We denote this vectorfi. Using this notation the average pixel
value in theA by A region surrounding pixeli is given by:

Let  and  then the variance of theA

by A region surrounding pixeli is given by:

(8)

The LVMSE (Local Variance Mean Square Error) between the

image estimate, , and the original image,f, may then be written
as:

(9)

Let  be denoted byVfi. Vfi is the estimate of the local vari-
ance of pixeli in the original image based on the degraded image
and knowledge of the degrading point spread function as per

equation (7).Vfi is calculated before the algorithm commences
and remains a constant throughout the restoration procedure.

To optimise (6) we require an equation for the gradient of (6) as
well one for the change in energy given a change in neuron state.
Without the LSMSE term in (6) these equations are obtained eas-
ily by using a neural network approach and have been derived by
Paik and Katsaggelos [3]. For each of these equations an extra
term must be added to take into account LSMSE. We derive these
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extra terms below.

The gradient of (9) is given by:

(10)

Note that this formula is an approximation of the gradient which
ignores the contributions of the local variances of the pixels adja-
cent toi to the overall LVMSE of the image.

(11)

Taking note of the fact that . Substituting (11) into (10) we

obtain:

Therefore

(12)

Given a change in the value of pixeli, the resultant change in
LVMSE is given by:

(13)

The algorithm first computes the negative direction of the gradient
using (12) which gives an indication of whether increasing or
decreasing the current neurons value will result in a net decrease in
energy. Once the negative gradient is found the neurons value is
changed in unit steps and the resultant energy decrease after each
step is computed with the aid of (13). This ends when no further
energy minimisation is possible. A further problem to be overcome
is the fact that the third term in (6) is not quadratic in nature. When
the local variance in the image estimate is much lower than the
projected local variances of the original image the LSMSE term
becomes large and may force the pixel values to an extreme of the
range of acceptable values in order to create a high variance region.
The LSMSE term should never completely dominate over the first
term in (6) since the LSMSE term only attempts to match regions,
not pixels and fine structure within the region will be lost. To
remedy this situation the pixel values are not allowed to change by
more than a set amount per iteration. This method appears to work
well in practice and the pixel values converge to a solution after a
finite number of iterations.
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4. RESULTS

For this experiment colour images were used consisting of three
colour planes, red, green, and blue. The images in this paper have
been converted to grayscale to comply with ICASSP require-
ments. The image was degraded by a 5 by 5 Gaussian PSF of
standard deviation 2.0 applied to each of the colour planes. In
addition additive noise of variance 369.31 was also added to each
colour plane. Figure 1 shows the original image and Figure 2
shows the degraded image. The degraded image has a SNR of
19.81dB and a LSMSE of 313.05. The SNR was calculated by
adding together the signal to noise ratio of each colour plane:

(14)

Similarly the LSMSE for the entire image was calculated by sum-
ming the LSMSEs of each colour plane. A 9 by 9 neighbourhood
was used for calculating the local variance. We compared our
algorithm with a Wiener filter approach. In this investigation, we
assumed that each colour plane in our test image does not have a
high level of correlation and so applied a Wiener filter to each col-
our plane separately. The Wiener restored image is shown in Fig-
ure 3 and has a SNR of 16.65 dB and a LSMSE of 859.80. The
image was also restored using the neural network algorithm with-
out the LSMSE term. A constraint factor ofλ = 0.001 was chosen.
The non-LSMSE restored image is shown in Figure 4 and has a
SNR of 17.26 dB and a LSMSE of 634.04. The same degraded
image was also restored using the LSMSE modified cost function.
In the LSMSE modified cost function the value ofλ was set to
0.0005. The factorθ was set to be 0.00001 and the image local
variance estimate was computed as:

This image is shown in Figure 5 and has a SNR of 19.89 dB and a
LSMSE of 180.81. Although the grayscale images in this paper do
not demonstrate this algorithms results as clearly as the colour
images, the important features of the colour images can still be
discerned. By visual observation it can be seen that Figure 5, pro-
duced by the LSMSE modified cost function, displays better noise
suppression in background regions and is at the same time sharper
than Figure 3 and Figure 4, produced by the Wiener and non-
LSMSE neural network approaches. Figure 5 also displays a bet-
ter SNR and LSMSE than Figures 3 and 4. Although the LSMSE
restored image is visually closer to the original image than the
degraded image, it’s SNR is only slightly higher than the degraded
image. This is not surprising in view of the arguments above that
SNR does not correspond well with human visual perception.
However LSMSE does match with human observation assigns a
much lower value to Figure 5.

5. SUMMARY

A novel error measure was introduced in this paper which com-
pares two images by consideration of their regional statistical dif-
ferences rather than their pixel-level differences. It was found that
this error measure more closely corresponds to human visual per-
ception of image quality. Using the new error measure a modified
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neural network cost function was developed. This cost function
was shown to perform well when applied to colour images. A
future research direction would be incorporating into the algo-
rithm information about the correlation between the colour co-
ordinates and comparing this with existing techniques such as the
well known Wiener filter proposed by Hunt and Kubler [2].
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Figure 1. Original image.

Figure 2. Degraded image.

Figure 3. Image restored using Wiener algorithm.

Figure 4. Image restored using non-LSMSE
neural network approach

Figure 5. Image restored using LSMSE-based algorithm.


