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ABSTRACT

Algorithms for image recovery with super-resolution from sequences
of short-exposure images are presented in this paper. Both decon-
volution from wavefront sensing (DWFS) and blind deconvolu-
tion are explored. A multiframe algorithm is presented for DWFS
which is based on maximum a posteriori (MAP) formulation. A
multiframe blind deconvolution algorithm is presented based on a
maximum likelihood formulation with strict constraints incorpo-
rated using nonlinear reparameterizations. Quantitative simulation
of imaging through atmospheric turbulence and wavefront sensing
are used to demonstrate the super-resolution performance of the
algorithms.

1. INTRODUCTION

The study of space objects (SO) such as satellites is growing in im-
portance. Most, if not all, SO images are acquired by ground-based
optical systems observing through the turbulent earth atmosphere.
Turbulence-induced inhomogeneities in the atmosphere cause se-
vere degradation of the images and are the chief obstacle to ob-
taining high resolution SO images with large aperture telescopes.
The area of interest in this paper is restoration of SO imagery with
super-resolution. Super-resolution may be defined formally as
the removal of blur caused by a diffraction-limited optical system
along with meaningful recovery of object spatial frequency com-
ponents outside the optical system passband [1, 10, 4]. This defi-
nition is adequate for the current context, in which the combined
atmosphere/telescope optical transfer function (OTF) replaces the
diffraction-limited OTF.

The super-resolution algorithms presented below for SO im-
ages are based on processing sequences of short exposure images,
or frames, in deconvolution from wave front sensing (DWFS) [8]
and blind deconvolution modes. Using multiple frames has ad-
vantages both in terms of image information content [7] and noise
control. Averaging the frames (approximating the long-exposure
image) is less effective because the object spatial frequency con-
tent in each of the frames is severely attenuated [7]. In the DWFS
case, wave front sensor measurements are taken for each frame
and used to estimate the optical transfer function (OTF). A multi-
frame maximum a posteriori algorithm [3, 6] is presented for this
task. In the blind deconvolution case, the OTF for each frame is
unknown and must be recovered during the deconvolution process.
The key to making blind methods work is the application ofa pri-
ori knowledge about the nature of the degradations and the images,
and using multiple differently blurred frames is in itself a powerful
constraint on the restored original object image. The algorithms

presented below extend the work of Conan and Thi´ebaut [12] to
the multiframe problem and are based on Bayes maximum likeli-
hood criteria for Poisson data.

2. ITERATIVE MULTIFRAME SUPER-RESOLUTION
ALGORITHMS

In this section, iterative multiframe algorithms are derived for both
deconvolution from wave front sensing and blind deconvolution.

2.1. Multiframe Poisson MAP Algorithms for Deconvolution
from Wave Front Sensing

Given an object imagef , letfgkg
K

k=1 andfhkg
K

k=1 be a sequence
of observed images and the sequence of atmosphere/telescope point
spread functions (PSF) which correspond to them. Discrete-to-
discrete image formation [1] is assumed with the object plane in-
dexed by coordinatesi andj, and the image plane indexed by coor-
dinatesx andy. Bayes rule provides a complete description of the
conditional probabilistic relationship between the object,f , and
the sequence of recorded images:

p (f; fhkgj fgkg) =
p (fgkgj f; fhkg) p (f; fhkg)

p (fgkg)
: (1)

In the following development, it is assumed that PSF estimates
have been produced from WFS measurements. They will not be
treated as statistical quantities as is possible in general. Assuming
that the observed images are statistically independent,1 the maxi-
mum a posteriori (MAP) estimate is given by

f̂ = argmax
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p (fgkgj f) p (f)
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p (gkj f) (2)
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X
k

ln p(gkj f) + ln pf (f) (3)

after taking the natural logarithm of the right hand side of Equation
(2). Solution of Equation (3) can be obtained by noting that it is
sufficient to solve the system of equations
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1It is important to note that the assumptions about statistical indepen-
dence are acknowledged to be generally incorrect. They are made solely
for the purpose of mathematical tractability.



By assuming Poisson emission and observation models for the
object and image, respectively, the multiframe Poisson MAP algo-
rithm is given by
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whereK is the number of data frames, and the notationh+k refers

to the adjoint ofhk
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. The object mean

emission rate�fij is generally unknown and implementation of
Equation (5) is not possible without some additional knowledge
about the object. This term can be useful for incorporating models
for the object in the form of Markov random fields [11]. In the ab-
sence of such a model, one may adopt the heuristic approach that
the latest estimate embodies the best knowledge about the object
prior distribution. Making the substitution�fij = fij yields the
baseline multiframe Poisson MAP algorithm. The computational
requirements of this algorithm increase linearly with the number of
frames. A more efficient algorithm, referred to as the incremental
version, may be derived by using the single frame PMAP algo-
rithm with a different pairfgk; hkg at each iteration. These pairs
may be drawn at random from the data set or in sequence. It has
the same computational requirements as the single frame version
while offering nearly identical super-resolution performance.

2.2. A Multiframe Maximum Likelihood Blind Deconvolution
Algorithm with Strict Constraints

The multiframe maximum likelihood estimate can be reformulated
as a minimization problem

f̂ = argmin
f;fhkg

[� ln p (fgkgj f)] (6)

where the PSF values are treated as free parameters in the above
model. A distributional assumption about them is not made. Pois-
son statistics are assumed for the observed image. Making the dis-
tributional substitution in Equation (6) yields the objective func-
tion, denoted byJ (f),
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An expression for the gradient with respect tofij is given by
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Strict positivity is imposed onfij by reparameterizing it asfij =
'2ij , where'ij is free to take on any value. Enforcing constraints
in this manner was proposed by Biraud [2] and revived for blind
deconvolution of astronomical images by Conan and Thi´ebaut [12].
The components of the gradient can be found in terms of the'ij
by applying the chain rule to yield
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At this point, it is necessary to compute the components of the
objective function gradient with respect to the PSF parameters. A
three-fold reparameterization of the point spread function enforces
positivity, unit volume, and finite bandwidth simultaneously. This
is given by
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where the k are the free parameters and� is a low pass filter ker-
nel designed to imposed a finite bandwidth on the PSF. The cutoff
frequency of� should be set to half the optical cutoff frequency
of the optical system because squaring the result of� �  k results
in a doubling of the bandwidth. The gradient in terms of the k
parameters can be found using the chain rule, as shown in Equa-
tion (11), where the dummy coordinatesm andn index the object
plane. With closed form expressions for the objective function and
its gradients, the problem may be solved with any number of gra-
dient descent-type methods. The method of conjugate gradients
was used to solve this problem.

3. SIMULATION RESULTS

The HYSIM3 simulation software developed at the Air Force In-
stitute of Technology was used to simulate short-exposure image
formation through atmospheric turbulence. It was also used to sim-
ulate Shack-Hartmann WFS performance. The parameters of the
simulation are intended to model image acquisition using a 1.6
m telescope with a central obscuration of 0.335 m. Each wave
front sensor subaperture corresponds to a 10 cm telescope subaper-
ture. Due to space limitations, results from only one case will be
shown: that of a visual magnitude four satellite viewed through an
atmosphere with a Fried parameter of 10 cm. Many other values
of these parameters were studied, and the algorithms performed
predictably. Figure 1 shows the original OCNR5 satellite object
image and a short-exposure image generated using the HYSIM3
code, and corresponding Fourier spectra. All images are256�256
in size. The optical cutoff of the instrument is located at half the
folding frequency. Because the data is oversampled, no upsam-
pling is carried out. In many practical situations, the recorded im-
ages are Nyquist-sampled or even under-sampled. In such cases, it
is necessary to upsample the restorations in order to avoid aliasing
caused by the super-resolution of the restored image [3].

3.1. Multiframe Poisson MAP Results

Two versions of the multiframe PMAP algorithm were presented
above: the baseline and incremental versions. From testing both
of these algorithms, it was found that the results produced by the
two were nearly identical in all cases. This is striking because
the computational requirements are quite different. Many cases
were considered and the near equivalence was uniform through-
out. The results presented in this section for the PMAP algorithm
were produced by the incremental version. Figure 2 show the Pois-
son MAP algorithm restorations from uncompensated images for
varying numbers of frames. The algorithms were allowed to run
for 1000 iterations. In many cases, this corresponds to early ter-
mination of the algorithm’s progress. Clearly, using more frames
produces better restorations. Super-resolution is evident in the re-
stored spectra. For fainter objects, more frames are required to
maintain the quality of the restoration. Restorations frommv = 8
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data demonstrate that the algorithms are near the lower limits of
acceptable performance and that 200 frames are required to obtain
a reasonable restoration. Both the SNR of the data and the wors-
ening performance of the WFS system are contributing factors in
the decline of performance with decreasing object brightness.

3.2. Multiframe Blind Deconvolution Results

Figure 3 shows blind deconvolution results produced from the same
data used to test the PMAP algorithm. As expected, the results
from the blind algorithm are not as good as the DWFS results in
which the OTF for each frame is measured. The results are en-
couraging, however. Super-resolution is in evidence, although not
to the same degree. The algorithm was implemented in C code on
the parallel IBM SP2 using the Message Passing Interface (MPI)
in order to make the execution time manageable.

4. CONCLUSION

New multiframe algorithms for constrained nonlinear deconvolu-
tion from wave front sensing and blind deconvolution were pre-
sented. Additionally, super-resolution of extended space object
images was demonstrated in both the DWFS and blind cases us-
ing careful simulation of imaging through atmospheric turbulence.
The use of multiple frames in the design of the algorithms was in-
strumental in controlling the noise present in photon-limited im-
ages without suppressing object spectral content in the individ-
ual frames, and for regularizing the blind deconvolution process.
The results indicate that post-processing of uncompensated im-
ages may be a viable alternative to building fully compensated
adaptive optics systems. Retrofitting existing large telescopes with
wave front sensor systems may also be the most effective way of
bringing them into the modern era of image recovery. It should
be stressed that when real time image recovery is critical, the ap-
proaches presented above do not provide a viable alternative to
adaptive optics. The results produced by blind deconvolution were
not quite as good as those from wave front sensing, which is not
surprising given the inherent difficulty of the problem. However,
they demonstrate that good image recovery is possible in this mode
of operation for extended satellite objects.
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[12] E. Thiébaut and J.-M Conan, “Strict a priori constraints for
maximum-likelihood blind deconvolution,”J. Opt. Soc. Am.
A, vol. 12, no. 3, Mar. 1995, 485-92.



(a) OCNR5 object (b) OCNR5 object spectrum (c)mv = 4 frame (d)mv = 4 frame spectrum

Figure 1: Computer rendered OCNR5 satellite object and a simulated short-exposure image at visual magnitudemv = 4 (r0 = 10 cm),
and associated spectra. All spectra are range compressed usinglog10(1 + j � j2).

(a) 50 frame restoration (b) 50 frame restored spectrum (c) 200 frame restoration (d) 200 frame restored spectrum

Figure 2: Restoration of visual magnitudemv = 4 OCNR5 object using the multiframe incremental Poisson MAP algorithm with varying
number of frames (r0 = 10 cm), and associated spectra. All spectra are range compressed usinglog10(1 + j � j2).

Figure 3: Restoration of visual magnitudemv = 4 OCNR5 object using the multiframe maximum likelihood blind deconvolution algorithm
with varying number of frames (r0 = 10 cm), and associated spectra. All spectra are range compressed usinglog10(1 + j � j2).


