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ABSTRACT

We modify the off-line system identification procedure
proposed by Regalia [4] into an adaptive IIR filtering
algorithm based on the stochastic gradient method.  The
proposed algorithm aims to minimize equation error,
recursively, under a unit-norm constraint on the
characteristic polynomial instead of the usual monic
constraint.  The unit-norm constraint eliminates the bias
associated with equation error based estimates, when the
additive measurement noise is white.  The unit-norm
constraint is enforced by adapting the parameters of the
characteristic polynomial in (hyper)spherical coordinates.
Simulation results indicate that the proposed algorithm
provides estimates that are unbiased and that it is a
computationally efficient alternative, for the same
performance, to FIR adaptive filters.

I. INTRODUCTION

Traditionally, finite impulse response (FIR) structures
have been used for adaptive filters, due to their simplicity.
However, it could be advantageous to be able to use
infinite impulse response (IIR) structures rather than FIR
structures for adaptive filters, especially when the desired
filter can be modeled with fewer parameters using both
poles and zeros rather than using only zeros.  The potential
reduction in computational complexity and improvement in
performance have motivated research in adaptive IIR
filtering.  A rich repertoire of algorithms for pole-zero
modeling, also known as auto-regressive moving-average
(ARMA) modeling, is already available in the system
identification literature.  This has led to the use of certain
system identification techniques for adaptive filtering [5].
In this paper, we modify a system identification method
proposed by Regalia [4] into an adaptive IIR filtering
algorithm based on the stochastic gradient technique.

The system identification method proposed by Regalia
[4] uses an off-line procedure, where a batch of data is
collected from the system and the collected data is used to
construct a model with a separate (off-line) procedure.
Off-line procedures are unsuitable for adaptive filtering,
where a model of the plant, possibly time varying, is
needed during the real time operation of the system.  Here,
a procedure is desired that updates the model after the

arrival of each new data point.  Such recursive procedures
use less memory than off-line procedures, since there is no
need to store all past data, and they may be used as
computationally-robust alternatives for the off-line
identification methods.  Of course we need to address the
new issue of convergence, when we use recursive methods.

Section II of this paper discusses the bias in equation
error based estimates and a modification to surmount this
problem for white measurement noise.  An adaptive
filtering algorithm based on unbiased equation error
minimization is presented in Section III.  Results from the
simulation of the proposed algorithm are shown in Section
IV.  Section V provides the conclusion.

II. UNBIASED EQUATION ERROR

The equation error [3] en , as shown in Figure 1, is
characterized by the difference equation:
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Figure 1.  Equation Error Based Identifier used for Adaptive
Filtering.

where xn  and wn  are the input and output (corrupted by
measurement noise) of the unknown plant, M  is the order
of the model, and { }b ak k,  are the coefficients of the IIR
model )(zH , that produces the estimate of the plant
output, and is defined as
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The coefficients of the model are chosen so that the mean
square equation error
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is minimized.  If we assume that the signals are stationary
and that the measurement noise vn  (in Fig. 1) is a
stationary white noise, with variance σ v

2 , which is
independent of the input, then (3) may be rewritten as
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where nd  is the true output of the plant.  A minimizing
solution of (4) is a b 0= = .  Some constraint is needed to
avoid this trivial solution.  Typically, a0  is set to 1.  This
results in a monic characteristic polynomial ( )A z .  With
the monic constraint the mean square equation error is
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Clearly, the “unwanted” second term on the right hand side
of (5) adds a penalty function proportional to the norm of
a . This introduces an undesirable bias, which depends on
the variance of the measurement noise, to the minimizing
solution.

Regalia’s identification procedure [4] overcomes this
bias problem by using a unit-norm constraint on a  instead
of the monic constraint.  With this unit-norm constraint, the
equation error in (4) becomes
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Since σ v
2  is a constant, minimizing (6) is equivalent to

minimizing the equation error under the noise-free
condition, i.e., noise does not influence the solution.  The
Hessian matrix of the mean square equation error, the
matrix in the quadratic expression in (6), is positive
semidefinite.  Hence, the error surface is convex [1].
Furthermore, if the input signal is persistently exciting of
degree 2 1M +  and the model order M  equals the true
order of the unknown plant, the minimizing solution of (6)
gives the true parameters of the plant.  If M  is greater than
the true order, the minimizing solution of (6) gives the true
parameters after common poles and zeros in the model are
canceled [4].  These properties of the unbiased equation
error criterion in (6) make it attractive for adaptive filtering
using gradient based algorithms.

III. RECURSIVE ADAPTIVE FILTERING
ALGORITHM

The objective is to recursively minimize the mean
squared value of the equation error shown in (1), under the
unit-norm constraint a at = 1 .  The gradient descent
algorithm [3], with suitable step-size, can be used to
minimize the mean square equation error.  However, true
gradient computation requires estimation of second order
statistics of the signals.  This can be avoided by using the
stochastic gradient algorithm [3].  Here, the instantaneous
squared value of the equation error, rather than its mean, is
minimized.  We enforce the unit-norm constraint by using
a (hyper)spherical parametrization of a.   That is, rather
than directly adapting ( )a = a a aM0 1, ,..., ,  we instead
adapt ( )θ = θ θ θ1 2, ,..., ,M  where
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The following constraints are added to have a one-to-one

correspondence between ( )�H z  of order M  and { }b,θ :

22 1 πθπ ≤≤− , and

},...,2,1{, Mkk ∈∀≤≤− πθπ .

If r = 1,  the a’s, as defined in (7), always satisfy the unit-
norm constraint.



The stochastic gradient method based adaptive
filtering algorithm is shown in Table 1.

Table 1.  Adaptive IIR Filtering Algorithm.
Initialization:

( )t0,,0,00 �=θ

( )t0,,0,00 �=b

For n = 0 1 2, , ,.... , repeat (8) - (11):
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The range of admissible values of µ , to ensure
convergence of this algorithm, depends on the eigenvalues
of the matrix appearing in (6).  For these values of µ , this
algorithm converges in mean and mean square sense to a
stationary point of the equation error surface, where
∇ =b 0,θ E , in B × ΘΘ  space.  The Jacobian J  of the
transformation (7) relates ∇b ,θ E  to the gradient with
respect to { }b a, parameters as follows:

∇ =
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0 J, ,E Et θ . (12)

Thus, if a point in B × ΘΘ  space is a stationary point, then
the corresponding point in B A×  space is also a stationary
point.  Since the equation error surface is convex in B A×
space, every stationary point here is a global minimum of
the equation error.  Hence, the above stochastic gradient
based algorithm converges (in mean and mean-square
sense) to the global minimum of the equation error surface,
even though the adaptation is carried out in terms of θ
parameters rather than a  parameters.

IV. SIMULATION RESULTS

The proposed algorithm is simulated in Matlab.  The
plant to be modeled is a fifth order system with poles and
zeros as shown in Figure 2.  The model order M  is chosen
to be 5, equal to the true system order.  The input xn  and
the measurement noise vn  are assumed to be white.  The
signal-to-noise ratio (SNR) of the measured output is 10
dB.  The steady-state pole and zero estimates from the
proposed algorithm, along with the estimates from the
traditional equation error  based algorithm (with monic
constraint), are shown in Figure 2.

Figure 2(a). True Pole Locations (*), Estimate using Unbiased
Equation Error (o), and Estimate using Traditional Equation

Error with Monic Constraint(+).

Figure 2(b). True Zero Locations (*), Estimate using
Unbiased Equation Error (o), and Estimate using Traditional

Equation Error with Monic Constraint(+).

The unbiased equation error approach produces estimated
poles that nearly coincide with the original poles, and
estimated zeros that are mostly very close to the original
zeros.  The corresponding results from the monic equation
error approach exhibit a pronounced bias.  Alternatively
we can look at the corresponding magnitude responses
shown in Figure 3. Clearly, the estimate from the
traditional algorithm is biased, while the estimate from the
proposed algorithm is unbiased.



Figure 3. Magnitude Responses: (a) True Response, (b)
Estimate from Equation Error with Unit-Norm Constraint,

and (c) Estimate from Equation Error with Monic Constraint.

Figure 4 shows the convergence behavior of the estimate
for an,0 .  The estimates for other an k, ’s behave similarly.

Figure 4. (a) True Value of a0  and (b) Estimated a0

from the Adaptive IIR Filtering Algorithm.

The next experiment illustrates the reduction in
computational complexity that can result from using an IIR
structure instead of an FIR structure.  The unknown plant
used here is the same 5th order plant discussed earlier.
Using a 5th order pole-zero model, we achieve a ratio of
estimation error (defined to be nn dd − ) variance to desired
signal variance (in the echo-cancellation literature [2], this
quantity is usually referred to as Echo Return Loss) of
better than -200 dB, as shown in Figure 5.  The proposed
IIR algorithm requires approximately 50 arithmetic
operations per iteration, assuming that the sine and cosine
values can be looked up from a table.  However, even with
a 1024th order FIR model, and using the NLMS algorithm
[2] to adapt this FIR model, the ratio of estimation error
variance to desired signal variance is not even -100 dB.
The NLMS algorithm requires approximately 3000
arithmetic operations per iteration.  Consequently, for this
example, the FIR structure requires much more
computational effort than the IIR structure, and performs
considerably less well.

Figure 5. (a) Estimation Error from NLMS(1024) and
(b) Estimation Error from the Proposed Algorithm.

A drawback of any IIR approach is that the identified
model can be unstable.  This manifests itself in Figure 5 by
iterations where, temporarily, the estimation error for the
proposed algorithm is larger than for the NLMS algorithm.
Monitoring model stability can mitigate this problem, by
skipping copying of the weights, while eventually yielding
the improved performance.

V. CONCLUSION

An algorithm for adaptive IIR filtering is presented.
This algorithm does not have any bias problem, if the
measurement noise is white, and it converges to the global
minimum of the unbiased equation error surface.  The
transient behavior of this algorithm needs further study.
The closer the poles of the unknown plant are to the unit
circle, the more the proposed algorithm realizes a
computational advantage over the NLMS-based FIR
adaptive filtering algorithm.
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