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ABSTRACT

We consider the problem of quantizer design in a distributed
estimation system with communication constraints at the
channels in the case where the observation statistics are un-
known and one must rely on a training set. The method that
we propose applies a variation of the Cyclic Generalized
Lloyd Algorithm (CGLA) on every point of the training set
and then uses a neural network for each quantizer to rep-
resent the training points along with their associated code-
words. The codeword of every training point is initialized
using a regression tree approach. Simulations show that the
combined approach i.e. building the regression tree system
and using its quantizers to initialize the neural networks pro-
vides an improvement over the regression tree approach ex-
cept in the case of high noise variance.

1. INTRODUCTION

The model of a distributed estimation system that we con-
sider consists of a single fusion center with a number of
remote sensors. This model has many applications to radar,
sonar and remote-sensing systems. In this scheme, the fu-
sion center estimates some parameters based on observa-
tions collected by remote sensors and transmitted to the cen-
ter. Some restrictions on this model such as the capacity
constraints on the communication lines suggest some very
challenging problems.

The exact model that we consider here is described be-
low. The sensors are not allowed to communicate with each
other and there is no feedback from the fusion center back to
them. The communication channels are assumed to be error
free. The observations from the sensors, are vector quan-
tized before the transmission to the fusion center in order to
satisfy the communication constraints. Thus, the estimation
is achieved via compressed information. We assume fixed
length coding for the transmission. Although the number
of sensors can be in general arbitrary, here we consider the
two-sensor case since the same solution can be easily ex-
tended to the more general case. The observations at the
sensors are random. Here, we consider the case where the
joint probability density function is unknown.

A solution based on a gereralization of regression trees
for the problem of quantizer design for such a distributed es-
timation system in the case of unknown observation statis-
tics has been given by Megalooikonomou and Yesha [4].
The same problem in the case of known probability model
was considered by Lam and Reibman [2, 3]. Gubner [1]
considers the problem of quantizer design for this system
subject not only to communication constraints but also to
computation constraints at the fusion center in the case of
known observation statistics.

Here, we consider the problem of quantizer design sub-
ject to communication constraints in the case where the joint
probability model is unknown and only a training sequence
is available. We present an approach that is based on neu-
ral networks. In this approach we first apply a variation
of the CGLA on every point of the training set in order to
find the proper codeword for every one of them. The initial
codewords are the ones that are given by the regression tree
approach [4]. We then use a neural network for each quan-
tizer in order to represent the training points along with their
associated codewords.

2. BACKGROUND

In order to attack the problem of quantizer design for a dis-
tributed estimation system in the case where only a training
set,T is available, someone can use the training set with the
CGLA in order to assign the best codeword to every training
point.

The CGLA leads to an estimation error that converges
and it is very sensitive to initialization of the labels (code-
words) that correspond to every training point. In the method
that we propose we use the system produced by the re-
gression tree approach proposed by Megalooikonomou and
Yesha [4] in order to initialize the labels of the training
points. This approach involves growing and pruning of re-
gression trees along with some labeling techniques, for iter-
atively decreasing the estimation error.

LetXq
1 andXr

2 be the random observation vectors at the
sensors and� the unobservable continuous quantity that the
fusion center tries to estimate. We use the vector notation
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source,Qk the quantizer for the sensork, and X̂p;t
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transmitted value for the observationXp;t

k to the fusion cen-
ter. The task of the fusion center is to estimate the unob-
served quantity� based on thêXp;t

k it receives.
Let h be the function of the fusion center that gives the

estimate of� andPQ1 = fUi; i = 1; : : : ; Ng andPQ2 =
fVj ; j = 1; : : : ; Lg, be the partition regions for the quan-
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regression tree method. The first quantizer has codewords
(labels)i = 1; : : : ; N and the second has codewordsj =
1; : : : ; L. Let l(Xp;t

k ) be the label of the pointXp;t
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whereIA(x) denotes the indicator function of a setA � <d

of dimensiond, i.e. IA(x) = 1 if x is in A andIA(x) = 0
otherwise.

The fusion centerh has the following value for each pair
of codewords (labels)i, j:
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whereRi;j is the following subset of the training set:
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The estimation error, can then be expressed as follows:
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2.1. Growing and pruning of the regression trees

The regression trees are decision trees with queries of the
form Xk[i] < cj (for an observation variableXk[i] and
a constantcj) where each leaf is labeled by an estimation
value which is generally constant. For observations of di-
mensiond the leaves of the regression tree correspond to
d-dimensional rectangles.

The regression trees are formed by iteratively spliting
subsets of the training set into descendant disjoint subsets.
The constraint that is imposed from the separate encoding
scheme when building the regression trees is that one tree

cannot have different splits based on answers to queries on
the other tree. The growing of the trees is based on the
decrease of the error in the estimation of the parameter� and
it is cooperative, i.e., we grow one tree taking into account
the tree for the other sensor (except from the first tree that
we grow). In order to grow right size trees, pruning (by
recombining leaves that are siblings) is also involved in the
growing procedure.

2.2. Labeling of the rectangles

After growing the trees, the rectangles (that correspond to
leaves of the regression trees) are labeled using an algo-
rithm that is related to the Cyclic Generalized Lloyd Algo-
rithm (CGLA), the s-CGLA, in order to combine the rectan-
gles into the required number of partition regions. Then the
trees are grown from the beginning in order to improve over
the previous trees including in this procedure the labels that
have been assigned to the rectangles.

Labeling is used to denote the assignment of codewords
to the rectangles of the regression trees in the sense that rect-
angles that have the same label form a quantizer partition re-
gion and use the same codeword for the transmission. One
labeling technique is the s-CGLA that considers together
groups of training samples. A second labeling technique is
the lh-s-CGLA that changes the fusion center temporarily
whenever there is a desicion that has to be made in order to
calculate the effect of every possible change and also keeps
the fusion center table updated all the time.

3. THE METHODS

In order to attack the problem of quantizer design for a dis-
tributed estimation system in the case where only a training
set,T , is available we use the training set with a variation
of the CGLA in order to assign the best codeword to every
point of the training set. Then we use a neural network to
represent the training points and their associated codewords
for each quantizer.

3.1. A variation of the CGLA

We use a variation of the CGLA on every point of the train-
ing set. The CGLA is very sensitive to the initialization of
the codewords. We initialize the labels of the training points
with the quantitiesl(Xp;t

k ) for quantizerk. The quantizers
of the regression tree approach as was described earlier can
be viewed as a collection of rectangles provided by a recur-
sive partitioning procedure along with their associated la-
bels (codewords) such that rectangles that have the same la-
bel to form a quantizer partition. Then we use the lh-CGLA
in order to decide about the best label for every one of these
points. This algorithm does not consider groups of training
points as the lh-s-CGLA [4]. It considers individual points.



Let the indext go through all the training points and the in-
dexj go through all the possible labels. Let alsonk be the
number of codewords andmk be the number of rectangles
of the quantizerk. The lh-CGLA algorithm performs the
following for each sensork:

lh-improve labels

1. t 1.

2. j  0.

3. l(Xp;t

k
) j.

4. calculateh using Equation 3 and the estimation error,
error[j], using Equation 5.

5. j  j + 1, if j < nk go to step 3.

6. l(Xp;t

k
)  argminj:0:::(nk�1)(error[j]), calculate

h using Equation 3.

7. t t+ 1, if t <= M go to step 2 else stop.

The above procedure is repeated until the reduction on the
estimation error becomes less than a given threshold. In or-
der to decide about the best label for a point this lookahead
algorithm changes temporarily the fusion center in order to
calculate the effect of every possible change. Moreover, it
also keeps the fusion center table updated all the time.

This method requires the whole training set to be stored
in each one of the sensors. Someone could group neigh-
boring points that have the same label after the application
of the lh-CGLA in the same rectangle. However, there is
no guarantee on the number of rectangles (intervals in the
1-dimensional case) produced by the algorithm. The worst
case is when the number of rectangles is equal to the number
of training points. So there is no easy way to describe the
regions except for storing the entire training set along with
the associated codewords. In the next section we overcome
these problems by proposing the use of a neural network
for each one of the quantizers of the distributed estimation
system.

3.2. Neural network quantizers

We use a neural network to represent the training points and
their associated codewords for each quantizer. We reduce
the space required for storing all the training points along
with their associated codewords. The neural network also
provides the required smoothing that otherwise has to be
done using a convolution of the training set with a smooth-
ing kernel or using ak-nearest neighbor algorithm.

The neural network that we use is a two-layer feed-
forward network and the learning rule is the backpropaga-
tion with momentum and adaptive learning rate. For the
first layer we use a hyperbolic tangent transfer fuction and
for the second layer we use a linear transfer function. This

kind of networks has been proven capable of approximat-
ing any function with finite number of discontinuities with
arbitrary accuracy.

The quantizer for each sensork = 1; 2 is a neural net-
work, NNk. The only input of the neural network at the
sensork is its observation,Xp

k . The output of the neural
network is the associated labell0(Xp

k ) for this observation,
wherel0(Xp

k ) is the final label of the pointXp
k after the ap-

plication of lh-CGLA. We use the unary representation for
the outputs of the neural network, so the number of out-
puts forNNk is nk wherenk is the number of codewords
for quantizerk. Let S1 be the number of neurons of the
first layer of the neural network. We usenk neurons for
the second layer (the output layer). We use the notation
ck : k = 1; : : : ;M for the elements of the weight and bias
matrices, i.e., the parameters of the neural network. The
number of parameters used for the description of the two-
layer neural network is

S1(nk + 2) + nk: (6)

For the training of the neural networkNNk for quantizer
k we use the following pair of input-output for every train-
ing pointt:

(Xp;t
k ; u(l0(Xp;t

k ))) (7)

whereu(x) is the unary representation ofx.
Let f(Xp;t

k ) be the output vector of the neural network
for input Xp;t

k after the training. This output vector may
not be in unary form so we select themax of its elements
and we report this as the codeword for quantizerk. We use
the same notationu(:) for the unary transformation of the
output vector. The transmitted value from the sensork to
the fusion center is:

X̂
p;t
k = u(f(Xp;t

k )) (8)

The fusion center tableh that we use is the one that was
produced using the regression tree approach. The estima-
tion error is then expressed as:

Error =
1
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4. SIMULATION RESULTS AND DISCUSSION

In the simulations we consider the case where the observa-
tions at the quantizers are scalar quantities of the form:

xk = � + nk; k = 1; 2 (10)

where the noisesnk at the sensors are Gaussian distributed
with correlation coefficient� and marginal distributions



N(0; �2n), where�2n is the variance of the noises. The pa-
rameter� has Gaussian distributionN(0; 1) and is indepen-
dent of the noisesnk; k = 1; 2. The quantizers are designed
using a training setT of 5; 000 samples and are tested on a
test setT 0 of 5; 000 samples that is independent ofT al-
though it is constructed the same way asT . We report re-
sults on the test setT 0 unless otherwise stated. We use the
breakpoint initialization of labels in the regression tree ap-
proach. The value0:005 was used for the error threshold in
all experiments. The number of epochs that were used to
train the neural networks is10; 000. Here, we compare the
performance of the regression tree approach, the neural net-
work approach and the full training set approach where all
the training points along with their associated labels have to
be stored. We use2 codewords for each quantizer.

For the regression tree approach we report the case where
8 and32 leaves are used. With8 leaves and2 codewords the
maximum number of parameters for each quantizer is15 (7
parameters to describe the split points and8 parameters for
the corresponding codewords). However, due to grouping
of consecutive intervals that have the same label to a single
interval, the actual average number of parameters used for
each quantizer is4. Increasing the number of leaves to32
increases the average number of parameters for the regres-
sion tree approach to5. We have to mention here that we
did not observe any significant improvement by increasing
the number of leaves beyond32 in this case.

The neural network approach uses5(= 3 + 2) neu-
rons which is14 parameters for each quantizer according
to Equation 6. The initialization of labels prior to lh-CGLA
uses the regression tree approach with8 leaves and2 code-
words for each quantizer. We present results for several val-
ues of�2n and for� = 0:85.

In Table 1 we compare the performance of the regres-
sion tree approach with that of the neural network. The sec-
ond method is superior for low noise variance. This table
contains a column for the performance of the system after
the lh-CGLA is applied. Notice that although the perfor-
mance of lh-CGLA on the test set is poor, the final perfor-
mance of the neural network approach on the test set is bet-
ter than that of the regression tree approach. Keep in mind
though that the regression tree approach was used to give the
initial assignment of labels before the lh-CGLA is applied.
Although there is an improvement in the regression tree ap-
proach if more leaves are used we noticed that there is also
a corresponding additional improvement in the neural net-
work approach, if during the initilialization, the output from
the regression tree approach with more leaves, is used.

From the third column of Table 1 it is also apparent that
the approach that stores all the training points along with
their associated labels behaves worse than the neural net-
work approach that uses much less parameters. However,
the algorithm that was used to calculate the error on the test

�2
n bp init, (2; 2) labels,� = 0:85

regr.tree regr.tree lh-CGLA NN
8 leaves 32 leaves

0.001 0.1230 0.1224 0.1250 0.1219
0.005 0.1253 0.1253 0.1298 0.1247
0.010 0.1616 0.1616 0.1372 0.1289
0.050 0.1950 0.1685 0.2081 0.1652
0.100 0.2221 0.2747 0.2928 0.2038
0.150 0.2677 0.2478 0.3682 0.2419
0.200 0.2811 0.2769 0.4214 0.2733
0.300 0.3663 0.3354 0.5787 0.3347
0.400 0.3913 0.3781 0.6704 0.3768
0.500 0.4411 0.4352 0.7491 0.4289
0.600 0.4713 0.4713 0.8379 0.4803
0.700 0.5244 0.4886 0.8930 0.5166
0.800 0.5299 0.5276 0.9797 0.5391
0.900 0.5619 0.5628 1.0563 0.5756
1.000 0.5877 0.5806 1.0944 0.5832

Table 1: Performance comparison of the neural network ap-
proach (5 neurons) and the regression tree approach.

set for the full training set approach was the nearest neigh-
bor so some reduction in the estimation error is expected if
a method of convolution of the training set with a suitable
smoothing kernel, or ak-nearest neighbor algorithm with
the properk value, is used. Storage and time limitations on
the sensors may suggest that this approach that stores the
full training set is not feasible.
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