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ABSTRACT
Automatic Score Transcription goal is to achieve an score-like
(notes pitches through time) representation from musical
signals. Reliable pitch extraction methods for monophonic
signals exist, but polyphonic signals are much more difficult,
often ambiguous, to analyze.

We propose a computationally efficient technique for automatic
recognition of notes from a polyphonic signal. It looks for
correctly shaped (magnitude and phase wise) peaks in a, time
and frequency oversampled, multiscale decomposition of the
signal. Peaks (partial candidates) get accepted/discarded by
their match to the window spectrum shape and continuity-
across-scale constraints. The final partial list builds a
resharpened and equalized spectrum. Note candidates are found
searching for harmonic patterns. Perceptual and source based
rejection criteria help discard false notes, frame-by-frame.
Slightly non-causal postprocessing uses continuity (across a
<150 ms. observation time) to kill too short notes, fill in the
gaps, and correct (sub)octave jumps.

1. INTRODUCTION

Many methods have been reported for automatic monophonic
speech and music pitch analysis. Applications include coding,
recognition, time/pitch stretching, pitch-to-MIDI, etc. [3],[4].

These models fail if exposed to polyphonic signals where
different voices or notes are mixed. Even the case of reverberant
monophonic signals is prone to errors (reverb enlarges the
effective note duration, and signal is not perfectly monophonic).

Bregman´s book [1] has been a turning point for a growing
group of researches on Computational Auditory Scene Analysis,
which try to build useful models of acoustic signal high-level
interpretation. Physically-motivated ear models [6] are the
preferred (though computationally intensive) signal processing
front-end, sometimes implemented with wavelets. Their outputs
feed 2D and 3D filters that enhance meaningful perceptual clues
for source streaming (onset time, frequency and amplitude
variation rate, etc. [2]). Streaming itself is accomplished by ad-
hoc rules or AI (blackboard, multiagent) techniques for
competition and collaboration among different grouping criteria.
Harmonic FLLs, multiscale techniques and prediction-
reconciliation schemes have also been proposed (see [5]).

In spite of the heavy computational load of these methods,
results are (so far) not up to the job. Additionally, the
harmonicity cue for grouping has only been briefly used, though
it is a very salient characteristic of musical signals.

We propose a new front-end, and then concentrate in the use of
harmonicity for correct grouping of partials. Our focus is on
pitch transcription, but results are encouraging as a basis for
source separation, using the partial list assigned to each pitch to
feed an additive resynthesis system.

2. MULTISCALE SINUSOIDAL MODEL

We use a multiscale sinusoidal model for the analysis of the
polyphonic musical signal. The final goal of this front-end is to
obtain a representative set of partials (frequency, amplitude and
phase) for each time frame. Resynthesis confirms the
opportunity of this decomposition. Multiple fft (with different
window lengths) are used to better discriminate the partials at
the scale they fit the most. Results of each scale are combined,
ending up with a single partial list for each time frame. Partial
interference is taken into account.

One of the most remarkable characteristics of musical signals is
the huge range of the fundamental frequency, spanning many
octaves. Additionally, the partials from different notes in
polyphonic signals can lay very close together  or even collide.
No single window can give a proper resolution over the whole
range.

Timbral and dynamic behavior of musical signals is also to be
considered. Acoustic musical instruments produce sound linked
(by design) to our hearing capabilities. Very low pitched notes
are difficult to be heard and they are usually played more
statically, with longer note durations and lack of ornaments. In
order to produce high pitched notes, both the instruments and
the players are subject to a heavier effort, making this high
notes more unstable and modulated. Strong sharp resonances are
not uncommon in low/medium pitched notes, but are rare on
high pitched notes because as the frequency rises so decreases
our capability to discern the precise pitch, and we need a clear,
well defined fundamental to perceive the proper note.

2.1 Filterbank

This discussion suggests the need of a multiscale front-end.
Many researches parallel the known behavior of our ear using a
constant-Q or 3rd octave filterbank coupled with non-linearities
that try to simulate the cochlea. Mid and upper frequency
channels of such decomposition mix different partials. With
monophonic signals, this mix beats at the period of the
fundamental. For polyphonic signals unrelated partials beat
meaninglessly on a single channel.



The (windowed) fft approach warranties a uniform view of the
spectral contents of a signal, the problem being the window
selection compromise between frequency resolution and inside-
window stability of the signal. Sinusoidal models (peak
detection on an fft) are common for monophonic signal analysis.

Our front-end (fig.1) uses a time-aligned non-complementary
filterbank. The fft of each output is a detailed (doubled spectral
resolution) look at the first half of the previous spectrum. A
multiscale peak search is made on this set of 4 spectra.
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Figure 1. Filterbank diagram. LPF is half-band lowpass.
A single Hanning window covers different time spans at
each scale due to factor 2 decimation on LPF outputs.

Short windows are well matched to (usually unstable) high
pitched partials. If they are high order harmonics of a low note
they will be of little amplitude and of little importance for the
global pitch of the note (the lack of frequency resolution is not a
problem). If they are partials of a high pitched note, they will
have noticeable energy and they will be sparse (distant to each
other), so the lack of frequency resolution is neither a problem
(also the log human pitch perception should be considered).

Long windows are only applied to lower spectral regions. They
are needed to resolve the partials of low/mid notes. Sometimes
partials lay so close together that very long windows are needed,
but cannot be applied (the notes themselves don’t hold for so
long statically). That’s why we only use 4 steps in the
filterbank. Therefore, some partial collision should be allowed.

Figure 2. Spectra at 4 different scales. Bottom to top,
each scale doubles frequency resolution but spans half
the bandwidth (piano chord + soloist woodwind note).

We calculate the fft with an excess factor in the number of bins
(8 times the number of time samples). This makes available a
detailed shape for each peak (not just a couple of points as in a
point per point fft). When two partials are very close to each
other, the peaks of both partials can be still seen in the enlarged
resolution fft, and an attempt can be made to discover both
partials from the detailed shape of the spectrum in the nearbies.

Frames advance at 11.6 ms irrelevant of scale: frame overlap is
50% at the full band scale (128 samples at 11025 fs), and
greater at successive scales.

The process of partial list creation has two steps. First, a partial
list is found at each scale. Then results from the 4 scales are
combined into a single final partial list.

2.2 Per-scale partial list detection

Initially every peak in the fft is found. Too low leveled peaks are
discarded. For each of the remaining peaks the surrounding bins
are compared with the theoretical peak -the main lobe of the
window spectrum-. A ‘quality of fit’ for the peak is measured
as:
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S is the signal complex spectrum, W is the window complex
spectrum, k is the bin index of the peak, and the sum spans a
range ξ of bins that corresponds to the width of the main lobe of
W. This formula is a partial-only-focused version of our
previous harmonic matching algorithm for monophonic signals
[3]. It constitutes a kind of quality of fit between the measured
peak and the expected ideal peak, and is related to the (energy
normalized) least square difference between real and ideal
peaks.

If the quality is not good enough, maybe the partial is subject to
disturbing influence of nearby partials. If another peak lies
closer than the window main lobe width, a new opportunity for
the peak to be confirmed is given. Instead of trying to emulate
the candidate peak nearbies with a single window main lobe,
two are summed located at the candidate peak and at the
interfering peak (with the corresponding amplitude and phase).
Then, the previous formula is reevaluated with the sum instead
of W.

Too badly shaped peaks are eliminated from the initial
temptative peak list. This initial peak selection (the decision
level) is somewhat lax, so the remaining peaks are not still
validated, but are subject to an across-scale confirmation.

2.3 Final partial list compilation

Validation comes from a combination of the surviving partials at
the 4 scales. We begin studying the whole band scale, and then
proceed to halved band scales in order.

If a partial exists simultaneously (at almost the same frequency)
at the current  scale and one or more consecutive scales, it gets
immediately validated.

If the partial has no continuation in the next scale partial list, it
can only be confirmed from the current scale. If it lies in the
upper mid of the spectrum (the next scale has no support for this
frequency) its ‘quality of fit’ parameter is checked to be better
than a minimum (more restrictive than in the intra-scale partial
validation). If it lies in the lower mid, the ‘quality of fit’ should
be better that an even more restrictive minimum (the lack of a
correspondent peak in the next scale should be compensated by
a better quality of fit).
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Figure 3. Final partial set for the previous example.
Width of each partial is used here to show the scale at
which they have been validated.

2.4 Masking

The results so far are then tested for masking effects. We build a
mask by locating a bell shape at the bin of each confirmed
partial. The bell height is that of the partial. The bell shape is:
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Hann(N) is the length N Hanning window and is used (point per
point) as a power; N is calculated to span 1.5 semitones at each
side of the peak. Final shape is similar to the response of
Gammatone (≡cochlear) filters but simpler to compute.

The mask is not calculated as the sum of all the bells, as this
would make the mask incorrectly tall in between close peaks.
For each bin the highest single bell contribution is considered.

Partials whose amplitude does not surpass 97% of the value of
the mask are discarded (most of the times second order lobes,
sidelobes of modulated partials, or noisy peaks).

3. NOTE IDENTIFICATION

3.1 Partial grouping

The quality of the partial list obtained in the previous steps, has
been assessed by resynthesis: it constitutes a valid
representation of the original signal. But we need to classify
partials into notes.

The ‘harmonic sum’ of the spectrum at equispaced bins has
been used to test for prominent comb partial patterns, but leads
to octave errors (subproducts combinations of real notes, etc.).

We tried the harmonic sum with various ‘equalized’ spectra
(partial enhancement by means of different kinds of non linear
filtering of the spectrum), and obtained the best results when
substituting the original spectrum by a new ‘synthetic’ spectrum
made from ‘sharpened’ peaks at the positions of the confirmed
partials from the previous analysis. The height of the synthetic
partials was not its amplitude, but 1 minus the ‘quality of fit’
parameter. This had 2 effects: a) the quality of fit of already
confirmed partials is not too distant to zero, so the heights of
synthetic partials get effectively equalized; b) the sharpening of
the partials gives greater importance to the correct centering of
the measured partials at the true multiples of the fundamental.

It became quite noticeable that it was the centering of the
partials the primal criteria for grouping and we decided to

change the grouping criteria from the modified harmonic sum to
a new rule based one, which has proved much more reliable.
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Figure 4. Traditional (spectral) harmonic sum (positive
values) against resharpened and equalized partials
harmonic sum (negative values; some false note discard
criteria  have also been applied -see later-).

For each note candidate in the desired pitch range, the list of
confirmed partials is searched for those partials that lay closer to
the 10 first true multiples of the fundamental (only the early
harmonics contribute meaningfully to the sense of pitch).

Each note candidate can then be assigned an amplitude pattern,
a ‘centering’ pattern and a partial list (index of partials
temptatively assigned to the note). Once this selection (for a
given note candidate) has been made, we can talk about
‘harmonics’ of the note candidate. If some harmonic is too off-
centered, it is discarded and marked as being zero amplitude. At
this step, partials can be claimed as harmonics by various notes,
there is no preemption in the partial to note assignment.

3.2 Note validation

Each candidate’s amplitude pattern is checked: only expectable
patterns are accepted. Expectable patterns may come from some
source modeling, but to achieve a source independent algorithm
we have tested the performance of some more general criteria:

• For low pitched candidates (<450Hz) at least 3 of the
first 5 harmonics shouldn’t be weak (amplitude no
less than 0.05 times that of the biggest harmonic) OR
at least 2 of the 3 lower ordered harmonics shouldn’t
be weak and 2 additional harmonics should be active.

• If the note candidate is >600Hz, the fundamental
should be active and at least have an amplitude of 0.1
times that of the biggest harmonic.

• Independent of pitch, there should be at least 2 odd
numbered harmonics not weak OR the harmonics with
order 2, 3 and 4 should be active.

• Independent of pitch, the sum of amplitudes for odd
harmonics should not be less than 0.1 times the sum
for the even harmonics.

If these criteria are met, a pitch is calculated for the note as:
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freq and amp (vectors of harmonic frequencies and amplitudes)
enhance the role of the more prominent partials, and arm is a
weighting factor that enhances that of lowered order harmonics.



The result is a collection of pitch candidates that typically shows
note candidates clustered around discrete values. A single
candidate for each cluster is accepted (the one with the largest
active partial count, weighted by the partial order).

The results so far still keep octave related note candidates (fig.
5). If a candidate lacks any energy at the fundamental, and the
rest of its meaningful partials are already justified by higher
pitched notes, the candidate is discarded because it looks like
being a cross-sub-product of higher notes.

Once this subharmonic rejection has been completed, we check
for multiples of true notes: if a note candidate is multiple (to a ¼
tone precision) of another lower pitched note, it is discarded.
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Figure 5. Selected notes (circles) for the example.
Subharmonic products are correctly discarded. The 4
notes of the piano chord are detected. The woodwind
note (1130 Hz) is missing because it is the 4th octave of
one of the piano notes, and it is discarded.

We finally get a note map: a set of note labels through time.

3.3 Postprocessing

Up to now, the algorithm performs ‘instantaneously’ in the
sense that it operates in a pure frame by frame manner. Results
for a typical musical signal are still non acceptable, showing a
large number of errors, mostly octave or suboctave jumps. But
the note map can be easily classified by eye into the correct
notes. This suggest some kind of postprocessing (in fact, hearing
itself is just a real-time illusion, not true real-time).

The front-end has been tested by means of resynthesis,
confirming the validity of the acoustic analysis. Then, the
‘context’ or ‘history’ of the signal should just be applied to
partial grouping and/or note validation (including selection
between octave related note candidates).

We keep a history of each alive note, as the set of values
corresponding to that note during the last N time frames (N=10,
<150 ms.). The note list obtained for the current frame is
checked against this history: if the frequency value of a current
note resembles that of some historical note, we update the
historical note and delete that note from the current note list.
Remaining current notes are ‘new’ notes, but it may happen that
they are harmonically related to some historical note, and then it
is better to keep the historical and not to validate the new one.
We check the current notes to be similar to 2, 3, 1/2, 1/3 or ¼
times some historical note. If this is the case, historical note gets
updated, and the current note is deleted from current note list.

Remaining notes in the current note list are included in the
history, marked as not still alive: they need to build up some
history before being accepted.

Any historical note that has not been updated yet, advances one
time step with zero amplitude, signaling the lack of information
about that note at that time step: lags can be later interpolated if
the historical note wakes up again soon.

Now all the historical notes have been updated (some with null
values) and the new notes included (they can begin to grow their
own history), and its time to validate final notes.

If a note that is not still alive has already gained enough history
(6 of its 10 time cells in history are not null) it should be
accepted and included in the final note pool together with its
history, filling the possible gaps in this initial time steps. A note
that is not still alive and comes to a state where all its time cells
are null is killed and deleted from history (without ever coming
alive).

A note that is alive, but lacks enough history (less than 4 of its
time cells are not null), must be killed: its currently stored
history is saved to the note pool (again filling the gaps), and
then the note disappears from history. A note that is alive and
does not need to be killed saves (only) its current value to the
final note pool.

1500

0 Hz   

Figure 6. Note map before and after postprocessing; 2
second excerpt (3 flutes are playing, but reverberation
makes up to 5 notes simultaneous at some time steps).

4. SUMMARY

A low computational cost multiscale sinusoidal model capable
of extracting a meaningful set of partials representation for
polyphonic signals has been presented. A method to sort this
partials through time into note estimates manages to obtain an
score-like representation for the original musical signal, with
little non-causality.
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