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ABSTRACT )
. o . . . We propose a new front-end, and then concentrateeiuse of
Automatic Score Transcription goal is to achieve an score-like harmonicity for correct grouping gbartials. Ourfocus is on
(notes pitches through time) representatitom musical pitch transcription, but results aemcouraging as &asis for

signals. Reliable pitch extraction methofisr monophonic  g4rce separation, usiige partial lisassigned to each pitch to
signals exist, bupolyphonicsignals aremuch more difficult, feed an additive resynthesis system.

often ambiguous, to analyze.

We propose a computationally efficient technique for automatic 2. MULTISCALE SINUSOIDAL MODEL
recognition of notes from a polyphongignal. It looks for

correctly shaped (magnitude and phase wise) peaks in a, timeWe use a multiscale sinusoidal modet the analysis of the
and frequency oversampled, multiscale decomposition of the polyphonic musicasignal. The finalgoal ofthis front-end is to
signal. Peaks (partial candidates) get accepted/discarded bgbtain a representative set of partidisquency, amplitude and

their match tothe window spectrum shape angbntinuity- phase) for each time frame. Resynthesisonfirms the
across-scale constraints. The finglartial list builds a opportunity ofthis decompositionMultiple fft (with different
resharpened and equalized spectrum. Note candidegésund window lengths)are used to better discriminate the partials at
searching for harmonipatterns. Perceptual arsburce based the scalgheyfit the most. Results of each scalee combined,
rejection criteria help discard false notesame-by-frame. ending up with a single partiéist for eachtime frame. Partial

Slightly non-causal postprocessing usamntinuity (across a  interference is taken into account.
<150 ms. observation time) tdll too short notes, fill in the

gaps, and correct (sub)octave jumps One of themost remarkable characteristics of musical signals is

the huge range ofhe fundamentafrequency, spanningnany
octaves. Additionally,the partials from different notes in
1. INTRODUCTION polyphonicsignals carlay very closetogether or even collide.

No single window can give a proper resolution otrer whole
Many methods havéeen reportedor automaticmonophonic range.

speech and music pitch analysis. Applications incloo@ing, ) ] ) ) )
recognition, time/pitch stretching, pitch-to-MIDI, etc. [3],[4]. Timbral anddynamic behavior of musicaignals is also to be
considered. Acoustic musicalstruments produce sound linked
These models fail if exposed fteolyphonic signals where  (by design) to our hearing capabilitiedery low pitched notes
different voices or notes are mixed. Exbe case of reverberant  are difficult to be heard anthey are usually played more
monophonicsignals is prone to errors (reverb enlarges the statically, with longer note durations and lack of ornaments. In
effective note duration, and signal is not perfectly monophonic). order to produce high pitched notes, btk instruments and
the playersare subject to a heavier efforhaking this high
notes more unstable and modulated. Strong sharp resonances are
not uncommon in low/mediunpitched notes, but are rare on
high pitched notes because as tiegjuencyrises so decreases
our capability to discern the precise pitch, and we need a clear,
well defined fundamental to perceive the proper note.

Bregman’s book [1has been a turning poirior a growing
group of researches on ComputatioAalitory Scene Analysis,
which try to build useful models of acoustic signal high-level
interpretation. Physically-motivatedear models [6] are the
preferred (though computationally intensive) signal processing
front-end, sometimes implemented with wavelets. Their outputs
feed 2D and 3D filters that enhance meaningful perceptual clues2 1
for source streaming (onséime, frequency and amplitude :
variation rate, etd2]). Streaming itself is accomplished by ad-
hoc rules or Al (blackboard, multiagent) techniques for
competition and collaboraticeimongdifferent groupingcriteria.
Harmonic FLLs, multiscale techniquesaand prediction-
reconciliation schemes have also been proposed (see [5]).

Filterbank

This discussion suggests the need of a multistralat-end.
Many researches parallel th@own behavior of ouear using a
constant-Q or 3ractavefilterbank coupled with non-linearities
that try to simulate thecochlea. Mid and upperfrequency
channels of such decomposition mix differgudrtials. With

In spite of theheavy computationaload of these methods, —monophonic signals, this mix beats at the period of the
results are (so farnot up to the job.Additionally, the fundamental. Forpolyphonic signals unrelated partials beat
harmonicity cue for groupingasonly been briefly used¢hough meaninglessly on a single channel.

it is a very salient characteristic of musical signals.



The (windowed) fft approach warranties a uniform view of the The process gbartial listcreation haswo steps. First, a partial

spectral contents of a signal, the problem beingwirelow
selection compromise between frequency resoludia inside-
window stability of the signal.

Our front-end (fig.1) uses a time-alignewn-complementary

Sinusoidal models (peak
detection on an fft) are common for monophonic signal analysis. 2.2

list is found at eactscale. Then resultsom the 4 scales are
combined into a single final partial list.

Per-scale partial list detection

Initially every peak in the fft is found. Too low leveled peaks are

filterbank. The fft of each output is a detailed (doubled spectral §iscarded. For each of the remaining peaks the surrounding bins

resolution) look atthe first half of the previous spectrum. A
multiscale peak search is made on this set of 4 spectra.

w: Hanning, 256 samples
fs: 11025 Hz.

[ fft | fs/4
Pa [t > 1512
fit p»fs

Figure 1. Filterbank diagram. LPF is half-band lowpass.
A single Hanning window covers differetitne spans at
each scale due to factor 2 decimation on LPF outputs.

Short windowsare well matched to (usually unstabldiligh
pitched partials. Ithey are high ordeharmonics of a low note
they will be of little amplitude and of littlemportance for the
global pitch ofthe note (the lack dfequency resolution is not a
problem). If theyare partials of a high pitched notagy will
have noticeable energ@ndtheywill be sparse (distant teach
other), so the lack dfequency resolution iseither a problem
(also the log human pitch perception should be considered).

Long windows are only applied to lower spectral regiornshey
are needed teesolve the partials of low/mid noteéSometimes
partials lay so close together that very long windavesneeded,
but cannot be appliedthe notes themselves don’t hdir so
long statically). That's why we only use 4 steps in the
filterbank. Therefore, some partial collision should be allowed.
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Figure 2. Spectra at 4 different scald3ottom to top,
each scale doubles frequency resolutiut spans half
the bandwidth (piano chord + soloist woodwind note).

We calculate théft with an excessactor inthe number of bins

(8 times the number of time samples). This makes available

detailed shapéor eachpeak (not just @ouple of points as in a
point per point fft).When twopartials arevery close to each
other, the peaks of both partiaian bestill seen in theenlarged
resolution fft, and an attempt can be made to disctvath

partials from the detailed shape of the spectrum in the nearbies

Frames advance at..6 ms irrelevant of ste: frame overlap is

are compared withthe theoretical peak -the main lobe of the
window spectrum-. A ‘quality ofit’ for the peak is measured
as:

§|S< k+&) - ADWE)|” 3 |S(k+E) DAGE)|

§|W(z)|2

where A=

§|S< k+8)|*

S is the signatomplex spectrum, W ithe window complex
spectrum, k is the bin index of the peak, and the sum spans a
rangeg of bins thatcorresponds tthe width of the main lobe of

W. This formula is apartial-only-focused version of our
previous harmonic matching algorithm for monophasignals

[3]. It constitutes a kind of quality of fit betwedhe measured
peak and the expected ideal peak, and is related t(etieegy
normalized) least squardifference betweerreal and ideal
peaks.

If the quality is hogoodenough, maybéhe partial is subject to
disturbing influence of nearbpartials. If another peak lies
closer than thavindow main lobe width, a new opportunity for
the peak to beonfirmed is given. Instead of trying to emulate
the candidate peak nearbies with a singiedow main lobe,

two are summed located at the candidate peak and at the
interfering peak (with theorresponding amplitude and phase).
Then, the previoubbrmula is reevaluated witthe sum instead

of W.

Too badly shaped peaks are eliminatddom the initial
temptative peak list. This initial peadelection (thedecision
level) is somewhatax, so the remaining peaks amet still
validated, but are subject to an across-scale confirmation.

2.3 Final partial list compilation

Validation comes from a combination of the survivpagtials at
the 4 scales. We begstudyingthe whole band scale, and then
proceed to halved band scales in order.

If a partial exists simultaneous{st almost the samfrequency)
at the current scale amhe or more consecutive scales, it gets
immediately validated.

3f the partial has no continuation in the next scale pdiglit

canonly be confirmed fronthe current scale. If it lies in the
upper mid of the spectrum (the next scale has no suppdttior
frequency)its ‘quality of fit'" parameter ischecked to béetter
than a minimum (more restrictive than in the intra-scale partial

‘validation). If it lies in thdower mid, the ‘quality of fit'should

be better that arven more restrictive minimurthe lack of a

50% at the full band scale (128 samples at 11025 fs), andcorrespondent peak the next scale should m®mpensated by

greater at successive scales.

a better quality of fit).



8 \ \ \ \ \ changethe groupingcriteriafrom the modified harmonic sum to
a new rule based one, which has proved much more reliable.
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Figure 3. Final partial setfor the previous example. . .
Width of each partial is used heredbowthe scale at 0 500 1000 1500
which they have been validated.

Figure 4. Traditional (spectral) harmonic sum (positive
. values) against resharpened and equalized partials
2.4 Masking harmonic sum (negative values; some false note discard

) ) criteria have also been applied -see later-).
The results so far are then tested for masking effects. We build a

mask by locating aell shape at the bin afach confirmed For each note candidate the desired pitch range, the list of
partial. The bell height is that of the partial. The bell shape is: confirmed partials is searched for those partials that lay closer to
100Ham.( N) 1 the 10 first true multiples of the fundamengahly the early

harmonics contribute meaningfully to the sense of pitch).

99
. . . . . Each note candidate can then be assigned an amplitude pattern,
Hann(N) is the length N Hanning window and is used (point per o ‘centering’ pattern and a partidist (index of partials

point) as a power; N is calculatedspan 1.5 semitones each temptatively assigned to the not&nce this selection(for a

side of the peak. Fina! shape i§ similar to the response Ofgiven note candidatehas been made, we camlk about
Gammatonescochlear) filters but simpler to compute.

‘harmonics’ of the note candidate.dbme harmonic is tooff-

The mask is not calculated as the sunalbfthe bells, as this ~ centered, itis discarded and marked as beingamylitude. At
would makethe maskincorrectly tall in betweenclose peaks.  this step, partialsan be claimed as harmonics by various notes,
For each bin the highest single bell contribution is considered. there is no preemption in the partial to note assignment.

Partialswhose amplitude does not surpass 97%hefvalue of 3.2 Note validation
the mask are discarded (most of the tirmesond order lobes,

sidelobes of modulated partials, or noisy peaks). Each candidate’s amplitude patternckeecked: onlyexpectable
patterns are accepted. Expectable patterag come from some
3. NOTE IDENTIFICATION source modelingyut to achieve aource independent algorithm

we have tested the performance of some more general criteria:

1 Partial groupin
3 artial grouping *  For low pitched candidates (<450Hz)laast 3 of the

The quality of the partidist obtained in the previous steps, has first 5 harmonics shouldn't be weak (amplitude no
been assessed by resynthesis: it constitutes a valid less than 0.05 times that of thiggest harmonic) OR
representation of the original signal. But we needlassify at least 2 of the 3 lower orderédrmonics shouldn’t
partials into notes. be weak and 2 additional harmonics should be active.

e If the note candidate i$600Hz, the fundamental
The ‘harmonic sum’ othe spectrum at equispaced bins has should be active and &asthave an amplitude of 0.1
been used to tesr prominentcombpartial patterns, but leads times that of the biggest harmonic.

to octave errors (subproducts combinations of real notes, etc.). .  |ndependent of pitch, there should belesst 2 odd

numbered harmonics not weak @ harmonics with

We tried theharmonic sum with various ‘equalized’ spectra _
order 2, 3 and 4 should be active.

(partial enhancement by means of different kindsani linear

filtering of the spectrum), and obtained the best resuktsn * Independent of pitch, the sum of amplitudes odd
substituting the original spectrum by a new ‘synthetic’ spectrum harmonics should not Hess than 0.1 times the sum
made from'sharpened’ peaks at the positions of doafirmed for the even harmonics.
partialsfrom the previous analysis. The height of sthetic If these criteria are met, a pitch is calculated for the note as:
partials was notts amplitude, but Iminus the ‘quality of fit’ 10
parameter. This had éffects: a)the quality of fit ofalready z[arrr( n) Camig nl freq ) }1

n=1

confirmedpartials is notoo distant to zero, sthe heights of
syntheticpartials geeffectively equalized; bjhe sharpening of
the partialsgives greater importance tbe correct centering of
the measured partials at the true multiples of the fundamental.

10
ngl[alrm( r) Camgg 9

freq andamp (vectors of harmonic frequencies and amplitudes)
It became quite noticeablthat it was the centering of the enhance the role of thmore prominenpartials, andarm is a
partials the primal criterifor groupingand we decided to  weighting factor that enhances that of lowered order harmonics.



The result is a collection of pitch candidates that typically shows Any historical note that hasot been updated yet, advances one
note candidates clustered around discrete values. A singldime step wittzeroamplitude, signaling the lack aiformation

candidate for eachluster is accepted (thene withthe largest
active partial count, weighted by the partial order).

The results so far still keegctaverelated note candidates (fig.
5). If a candidate lackany energy athe fundamental, and the
rest of itsmeaningfulpartials arealready justified by higher
pitched notes, the candidate is discarded becauseks like
being a cross-sub-product of higher notes.

Oncethis subharmonic rejection has been completedcherk

about that note at that tinséep: lags can bater interpolated if
the historical note wakes up again soon.

Now all the historicahotes have been updated (some with null
values) and the new notes included (they can beginoww their
own history), and its time to validate final notes.

If a note that iot still alive hasalready gained enough history
(6 of its 10 time cells irhistory are not null) it should be
accepted and included in the final ng®ol togetherwith its

for multiples of true notes: if a note candidate is multiple (to a ¥ history, filling the possible gaps in this initial time stepsiote

tone precision) of another lower pitched note, it is discarded.
2

15F
l.
0.5

Lt | ‘

0 500

1000 1500

Figure 5. Selected notes (circles) fahe example.
Subharmonic productare correctly discarded. The 4
notes of the pianehord are detected. Thevoodwind

note (1130 Hz) is missing because ithie 4thoctave of
one of the piano notes, and it is discarded.

We finally get a note map: a set of note labels through time.

3.3 Postprocessing

Up to now, the algorithmperforms ‘instantaneously’ in the
sense that it operates in a pin@ne by frame manner. Results
for a typical musical signare stillnon acceptable, showing a
large number of errorsnostly octave or suboctayemps. But
the note mapan be easily classified byye into the correct

that is not still alive and comes to a state wherésatimecells
are null is killed and deletefdom history (without evercoming
alive).

A note that is alive, but lacksnough historyless than 4 of its
time cells arenot null), must be killed:its currently stored
history is saved tdhe notepool (again fillingthe gaps), and
then the note disappedi®m history. A notethat is alive and
does not need to be killed sa\esly) its current value to the
final note pool.
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Figure 6. Note map before and after postprocessing; 2
second excerpt (3 flutesre playing, but reverberation
makes up to 5 notes simultaneous at some time steps).

4. SUMMARY

notes. This suggest some kind of postprocessing (in fact, hearing

itself is just a real-time illusion, not true real-time).

The front-end has beetested by means of resynthesis,
confirming the validity of the acoustic analysis. Then, the
‘context’ or ‘history’ of the signal shoulgust be applied to
partial grouping and/or note validation (including selection
between octave related note candidates).

We keep a history of each alive note, the set ofvalues
corresponding tthat note during thiast N timeframes (N=10,
<150 ms.). The notdist obtained forthe current frame is
checked againghis history: if the frequency value of a current
note resembles that afome historical note, we update the
historical note and delete that ndtem the current notdist.
Remaining current notes are ‘new’ notes, bumaty happen that

they are harmonically related to some historical note, and then it

is better to keep the historical and not to validate the ormav
We checkthe current notes to be similar to 2, 3, 1/2, 1/3 or Y%
times some historical note. If this is the case, historical note get
updated, and the current note is deleted from current note list.

Remaining notes in the current ndist are included in the
history, marked as ndttill alive: theyneed to build upome
history before being accepted.

351

A low computational cost multiscale sinusoidal model capable
of extracting a meaningfuset of partials representation for
polyphonic signals has been presented. A method to thost
partialsthrough time into note estimates manages to obtain an
score-like representatiofor the original musical signal, with
little non-causality.
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