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ABSTRACT

Most of the second order based fractionnally sampled blind
equalizers are known to perform poorly in the context of
band limited signals. In this paper, we analyse the behaviour
of the subspace method in the particular context of band
limited signals. As it is well known, the subspace chan-
nel estimate is obtained as the eigenvector associated to the
eigenvalue 0 of a certain positive quadratic formQ. We
show that apart 0,Q has quite small eigenvalues, and that
this induces poor statistical performance. More importantly,
we characterize the numerical kernel ofQ, and show that it
contains vectors constructed from certain spheroidal wave
sequences. From this, we deduce that the subspace method
does not allow to estimate accurately the transfer function
of the channel on a certain frequency interval.

1. INTRODUCTION

Let fvngn2Z be a zero mean unit variance i.i.d symbol se-
quence to be transmitted through a linear channel at the
baud rate1=T . The continuous time received signal~y(t)
can be written as :

~y(t) =
X
n2Z

vn~h(t� nT )

where the filterf~h(t)g results from the emission and the re-
ception filters and from the multipath effects. In this paper,
we assume without restriction that~h(t) is causal and time
limited. Generally,f~h(t)g is unknown, and has therefore to
be estimated in order to retrieve the symbols from the re-
ceived signal. In most communication systems, the emitter
sends periodically a training sequence known from the re-
ceiver, and which allows to estimate the unknown channel.
However, the use of a training sequence has certain well
known drawbacks. Therefore, a number of works have been
devoted to the so-called blind equalization problem consist-
ing in identifying the channel from the sole knowledge of
the received signal~y(t). Gardner ([4]) and Tong et al ([8])
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were the first to remark that it is possible to use the cyclo-
stationnarity of~y(t) in order to identify the channel from
the second order statistics of the observations. For this, they
proposed to sample~y(t) at rate2=T (or more generally to
q=T for q > 1; we just considerq = 2 in this paper). The
discrete time signaly(n) = ~y(nT=2) can be written as

y(n) =

PX
k=0

hkun�k = [h(z)]u(n)

whereun is defined byu2n = vn etu2n+1 = 0 and where
h(z) =

PP
k=0 hkz

�k, hk = ~h(k T2 ). fy(n)g is cyclosta-
tionnary with cyclic frequencies0 et 12 and its correspond-

ing cyclospectra are given byS0y(e
2i�f ) = 1

2 jh(e
2i�f )j

2

andS
1
2
y (e2i�f ) = 1

2h(e
2i�f )h�(e2i�(f�

1
2
)). It is well es-

tablished that ifh(z) et h(�z) have no common zero, the
knowledge ofS0 andS

1
2 allow to retrieveh(z). Moreover, a

number of time domain estimation algorithms ofh(z) have
been proposed recently.

The above mentionned identifiability condition is of
course verified in most cases. However, it has been observed
that the performance of many second order statistics based
identification algorithms are very poor if the channel is ”ill-
conditionned”, i.e. ifh(z) andh(�z) have almost common
zeros ([10]). Van der Veen also considered in [9] the case
of band limited channels. To precise this, we note that gen-
erally, the bandwith of the emission filter of the emitter is
an interval[��=T; �=T ] where1=2 < � < 1. The Fourier
transform of~h(t) is thus numerically zero outside this inter-
val, and this implies that

h(e2i�f ) � 0 if f 2 [�1=2;��=2][ [�=2; 1=2] (1)

Van der Veen showed that in this case, the so-called
Sylvester matrix introduced in the subspace method of [6]
is ill conditioned, and that the estimation of the signal and
the noise subspace is a difficult task.

In this paper, we study the performance of the subspace
method of [6] in the band limited channel case. We first
recall that the subspace estimate is defined as the eigen-
vector associated to the eigenvalue0 of a certain matrixQ.



Next, we justify that this matrix has also quite small eigen-
values, and we show that the ”smallest” wave spheroidal
wave sequences associated to a certain interval belong to
the numerical kernel ofQ. This observation is interpreted in
the frequency domain, and leads to the conclusion that the
subspace method estimates very poorly the transfer func-
tion of the channel over the frequency interval of the band-
with of h(e2i�f ) on which the cyclic spectrumS1=2(e2i�f )
is nearly zero. All these claims are essentially based on a
heuristic analysis because it is quite difficult to study an-
alytically the behaviour of (quasi) band-limited FIR trans-
fer functions. In order to justify our analysis, we study
the asymptotic covariance matrix of the subspace estimate.
Using numerical evaluations, we show that the covariance
of the subspace estimate is explosive in the directions of
the spheroidal wave sequences, and that the variance of the
estimated transfer function is very high in the above men-
tionned frequency interval.

We finally introduce some convenient notations : we
put I1 = [� 1

2 ;�
�
2 ] [ [�2 ;

1
2 [, I

+
2 = [ 1��2 ; �2 ], I

�
2 =

[��
2 ;�

1��
2 ], I2 = I+2 [ I�2 andI3 = [� 1��

2 ; 1��2 ]. We
note thath(e2i�f ) � 0 if f 2 I1 and thatS1=2(e2i�f ) � 0
if f 2 I1 [ I3.

2. REVIEW OF THE SUBSPACE METHOD

We assume for convenience that the degreeP of the filter
h(z) is odd and we setP = 2M + 1. Let Y (n) be the
2–variate signal defined byY (n) = [y(2n+ 1) y(2n)]

T .
Y (n) is clearly stationary, and can be written asY (n) =
[H(z)]vn, whereH(z) = [HT

1 (z)H
T
2 (z)]

T is the one input
/ two outputs FIR filter defined by

H1(z
2) =

h(z)� h(�z)

2z�1
H2(z

2) =
h(z) + h(�z)

2
(2)

Let N � M , and putYN (n) = [Y T (n) : : : Y T (n �N)]T .
Then,YN (n) can be written asYN (n) = TN (h)VM+N (n)
whereTN (h) is the so-called2(N + 1) � (M + N + 1)
Sylvester (block Toeplitz) matrix associated to the filter
H(z) defined fromh(z) by (2). The covariance matrix
RN of YN (n) is thus equal toRN = TN (h)TN (h)�. It
is well established that ifh(z) andh(�z) have no common
zero, the rank of the matricesTN (h) andRN is equal to
M +N + 1. Moreover, denote by�N the orthogonal pro-
jection matrix on the Kernel ofRN . If f(z) =

PP
k=0 fkz

�k

is a degreeP FIR filter, we putf = (f0; : : : ; fP )
T , and con-

sider the quadratic formQ defined by

f ! Trace[�NTN (f)(TN (f))
�] = f�Qf

The subspace method of [6] is based on the observation that
the Kernel ofQ is the one-dimensional subspace generated
by the vectorh associated to the filterh(z). In practice,

the matrixQ is of course unknown, but it can be estimated
consistently from the observations if the additive noise is
white (or more generally if the second order statistics of the
noise are known up to a scalar constant). The eigenvector
ĥ associated to the smallest eigenvalue of the estimateQ̂
of Q represents a consistent estimate ofh (up to a scalar
constant).ĥ will be referred to as the subspace estimate of
h in the sequel.

3. REVIEW ON THE SPHEROIDAL WAVE
SEQUENCES.

The order 2M + 2 spheroidal wave sequences ([7])
of the interval I1 [ I2 are the (unit norm) eigen-
vectors fkjgj=1;2M+2 associated to the eigenvalues
f�jgj=1;:::;2M+2 (with �1 � : : : � �2M+2) of the positive
Toeplitz matrixK defined by

K =

Z
I1[I2

D2M+1(e2i�f )D
T
2M+1(e

2i�f )df

whereD2M+1(e
2i�f ) = [1; e�2i�f ; : : : ; e�2i�(2M+1)f ]

T

and (:) stands for the conjugate. They play an important
role in various problems involving implicitely band limited
signals (e.g. band limited spectral estimation ([5]), broad-
band source localization ([2]), array beamforming ([3])). It
is well known that the matrixK is ill conditionned, and that
its ”numerical” rank is equal to1+ int((2M +2)jI1 [I2j),
where int(:) stands for the integer part of(:) and where
jI1 [ I2j = � represents the size ofI1 [ I2. In the follow-
ing, we denote bys the dimension of the numerical kernel
of K. Let kj(z) be the polynomial associated to the vector
kj . Ask�jKkj is given by

k�jKkj =

Z
I1[I2

jkj(e
2i�f )j2df

the bad conditionning ofK implies that ifj � s, then

kj(e
2i�f ) � 0 if f 2 I1 [ I2

In others words, the FIR filterskj(z) for j = 1; s associated
to thes ”smallest” spheroidal wave sequences ofI1 [ I2
are nearly band limited and their bandwith coincide with
the intervalI3.

4. THE NUMERICAL KERNEL OF Q

In this section, we justify thatQ is ill conditionned, i.e. that
it has a ”numerical” kernel. For this, we have first to derive
its closed form expression in terms of�N . Let us put�N =
[�0;N ; : : : ;�N;N ] (where each matrix�k;N is2(N+1)�2)
and�N (e2i�f ) =

PN
k=0 �k;Ne

�2i�kf . Let us also define



the matrixD� by

D� =

Z 1

0

DM+N (e2i�f )D
T
M (e2i�f )
�N (e

2i�f )df (3)

where
 stands for the Kronecker product. Then,Q =

PD�
�D�P whereP = IM+1 
 J2, andJ2 =

�
0 1
1 0

�
.

The matrixQ depends on�N , i.e. on the vectors of
the kernel ofRN . Let us first analyse the properties of
these vectors. For this, letg = [g0; : : : ; g2N+1] be a unit
norm row vector of the noise subspace, and putg(e2i�f ) =P2N+1

k=0 gke
�2i�kf . It is easy to check that

g(e2i�f )h(e2i�f )+g(e2i�(f+1=2))h(e2i�(f+1=2)) = 0 (4)

for eachf . If f belongs toI3, f + 1=2 is in I1 and
h(e2i�(f+1=2)) � 0. Therefore, relation (4) implies that

g(e2i�f ) � 0 if f 2 I3

Using this, we now derive an approximate expression ofQ.
Let (�k;N )k=0;2N+1 be the elementary columns of�N and
let us denote by�N (e2i�f ) the vector valued function de-
fined by�N (e2i�f ) =

P2N+1
k=0 �k;Ne

�2i�kf . From what
preceds, each component of�N (e2i�f ) is nearly zero on
I3. Therefore,�N (e2i�f ) � 0 if f 2 I3. On the other
hand, using (3) and the relation

�N (e
2i�f ) =

1

2

h
�N (e

i�f ); �N (e
i�(f+1))

i �
1 ei�f

1 ei�(f+1)

�

one can check that

Q =

Z 1=2

0

Q2(e
2i�f )Q�

2(e
2i�f )df

Q2(e
2i�f ) = Q1(e

2i�f )�Q1(e
2i�(f+1=2))

Q1(e
2i�f ) = D2M+1(e2i�f )

�
�N(e

�2i�f )
��

As �N (e2i�f ) � 0 if f 2 I3, this reduces to

Q =

Z
I1

Q1(e
2i�f )Q�

1(e
2i�f )df +

Z
I
+

2

Q2(e
2i�f )Q�

2(e
2i�f )df

From this, we get immediatly that ifl is a (2M + 2)-
dimensional vector and ifl(z) =

P2M+1
k=0 lkz

�k represents
its associated degree2M + 1 FIR filter, l�Ql is given by

l
�
Ql =

Z
I1

k�(e2i�f )k2df+

Z
I
+

2

k�(e2i�f )��(e2i�(f+1=2))k2

�(e2i�f ) = l(e2i�f )
�
�N (e

�2i�f )
��

It is therefore quite clear thatk�jQkj � 0 for j = 1; s. In
other words,Q is an ill conditionned matrix, and its numer-
ical kernel contains the vectorsfkjgj=1;s.

In practice, the true kernel and the numerical kernel ofQ
are of course difficult to separate. More precisely, even if
the estimatêQ of Q is very accurate (if the signal to noise
ratio is very high, or if the duration of the observation is
large), the eigenvector associated to the smallest eigenvalue
of Q̂ will certainly contains a non zero contribution belong-
ing to the space generated by the vectorsfkjgj=1;s. This
of course tends to indicate that the subspace estimate has
very poor statistical performance. This discussion has an
interesting interpretation in the frequency domain. For each
f , the estimated channelĥ(e2i�f ) is likely to be a linear
combination ofh(e2i�f ) and of the(kj(e2i�f ))j=1;s. If
f 2 I1 [ I2, the (kj(e

2i�f ))j=1;s are nearly zero, and
ĥ(e2i�f ) � h(e2i�f ). However, this is no longer true on
I3 because the(kj(e2i�f ))j=1;s are of course not zero on
I3. Therefore, the subspace method estimates accurately
the channel onI1[I2, but not onI3. These heuristic claims
are going to be justified in the next paragraph by analysing
the asymptotic covariance matrix ofĥ.

We also mention that the true matrixRN is ill condi-
tionned ([9]). Therefore,RN has a ”numerical” kernel
which is quite difficult to separate from the true kernel. In
other words, the projection matrix�N introduced previ-
ously has to be replaced in practice by the projection ma-
trix ~�N on the larger space generated by the true kernel and
the numerical kernel. The matrixQ has also to be replaced
by a certain matrix~Q. However, the vectorsfkjgj=1;s still
belong to the numerical kernel of~Q. To see this, we note
that our analysis of the numerical kernel ofQ is entirely
based on the fact that ifg 2 Ker(RN ), theng(e2i�f ) � 0 if
f 2 I3. But, it is easy to check that the vectors of the ”aug-
mented” kernel ofRN still satisfy this property. Therefore,
the vectorsfkjgj=1;s are in the numerical kernel of~Q.

We finally note that apart their own interest, the above
results can be used in order to derive a relevant version of
the so-called JOSC (joint optimization with subspace con-
straints) estimation algorithms (see [10]). The idea is to
remark that the subspace approach allows to estimate the
channel up to the numerical kernel ofQ. In order to raise
this indeterminacy, one can use a covariance matching algo-
rithm in which the parameter is constrained to belong to the
numerical kernel of̂Q. The main benefit of this approach is
to reduce the number of parameters to be estimated by min-
imizing the (non linear) covariance matching cost function.
It is clear that any a priori information on the numerical ker-
nel ofQ can be used in order to improve the performance
of such an algorithm. This last point will be treated in a
forthcoming paper.

5. STATISTICAL PERFORMANCE ANALYSIS.

In this section, we justify the previous claims by studying
the asymptotic covariance matrix of the subspace estimate



ĥ in the case where the observations are corrupted by an
additive white gaussian noise with variance�2. We also
assume that the symbol sequence is circular. We first recall
([1]) that if K denotes the sample size, the estimateĥ is
asymptotically Gaussian, and that its asymptotic covariance
matrixCssm defined by

Cssm = lim
K!1

KE
h
(ĥ� h)(ĥ� h)�

i

is given by

Cssm = (PD�
�D�P)

#PD�
��D�P(PD

�
�D�P)

#

where� is a certain matrix (see [1] for more details). The
notation(:)# stands for the pseudo-inverse.

In order to justify our claims, we have to check thath is
very badly estimated in the space generated by the vectors
fkjgj=1;s, i.e. that the(k�jCssmkj)j=1;s are very large.
In our evaluations, the channelh(z) results from a spectral
raised cosine shaping filter and from 2 multipaths. The roll-
off of the shaping filter is� = 0:25, which corresponds to
� = 0:62, i.e. I1 = [�:5;�:31][ [:31; :5[, I+2 = [:19; :31],
I�2 = [�:31;�:19], andI3 = [�:19; :19]. The signal to
noise ratio is equal to50dB and we setN = 9. We first
show in table 1 that the matrixCssm is very ill conditioned,
thus showing thath is very badly estimated in certain sub-
spaces. In table 2, we give the(k�jCssmkj)j=1;s, which

maxx6=0
jjCssmxjj

2

jjxjj2
minx6=0

jjCssmxjj
2

jjxjj2

31.65dB -50dB

Table 1: Maximal and minimal singular values ofCssm

as expected, are very large and close from the largest eigen-
value ofCssm. We also plot the asymptotic variances of

k�jCssmkj with j = 1; : : : ; s = 7

26.4 ; 25.3 ; 22.7 ; 12.6 ; 11 ; 7 ; 3

Table 2: Values indB

theĥ(e2i�f ) versusf . Figure 1 shows thath(e2i�f ) is very
badly estimated iff 2 I3. We finally mention that the
optimally weighted subspace method introduced in [1] does
not provide significantly better results in our context.

6. CONCLUSION

In this paper, we have analysed the performance of the sub-
space method of [6] in the context of band limited chan-
nels. We have shown that the associated quadratic form is
ill conditionned, and that its numerical kernels contains cer-
tain spheroidal wave sequences. We have deduced from this
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h
jjĥ(e2i�f )� h(e2i�f )jj2

i
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that the subspace method estimates very poorly the transfer
function of the channel over a certain interval. We feel that
this can be used in order to develop a relevant version of the
JOSC algorithms introduced in [10].
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