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ABSTRACT

We consider the situation where n items have to be se-
lected among a series of N presented sequentially, the
information contained in each item being random. The
problem is to get a collection of n items with maximal
information. We consider the case where the informa-
tion is additive, and thus need to maximize the sum of
n independently identically distributed random vari-
ables xk observed sequentially in a sequence of length
N . This is a stochastic dynamic{programming prob-
lem, the optimal solution of which is derived when the
distribution of the xk's is known. The asymptotic be-
haviour of this optimal solution (when N tends to in-
�nity with n �xed) is considered. A (forced) certainty{
equivalence policy is proposed for the case where the
distribution is unknown and estimated on{line.

1. INTRODUCTION AND PROBLEM

STATEMENT

We consider the situation where a sequence of items
yk is proposed, e.g. for further delayed processing, the
information contained in each yk being measured by
a scalar variable xk. The sequence fykg has length N
and the storage capacity is n < N . The problem is then
to derive on{line a decision rule for the storage of the
yk's which maximizes the information contained in the
items. The storage is permanent: items are selected
forever, that is any item selected at time j cannot be
replaced by another one at time k > j.

Another possible setup is when a scalar parame-
ter � has to be estimated from observations yk, de-
scribed by yk = f(�; zk) + �k with f�kg an i.i.d. se-
quence of random variables. N experiments, charac-
terized by the zk's are proposed, but only n can be
performed. Their selection forms a problem of sequen-
tial experiment design. The criterion is Fisher informa-
tion, given by

Pn

i=1 !
2(�0; zki), with ki 2 f1; : : : ; Ng,

!(�; z) = @f(�; z)=@�, and �0 some prior nominal value
of �.

We shall assume throughout the paper that the xk's
are independent random variables. The dependent case
(e.g. Markov process), and the case where information
is not additive (e.g. when yk = f(�; zk) + �k, with � a
p-dimensional vector), deserve further studies.

Let fukg be the decision sequence, with uk = 1 if
yk is stored/observed at time k, and uk = 0 otherwise.
The problem is then to maximize

JN (u
N
1 ) =

NX
k=1

ukxk ; (1)

with uN1 = (u1; : : : ; uN) satisfying the constraint

NX
k=1

uk � n ; (2)

the constraint will be saturated at the optimum, see
(3). For any sequence uN1 and any time (or step) j, 1 �
j � N , let aj be the number of items already stored,

that is aj =
Pj�1

k=1 uk with a1 = 0, and c(j; aj;u
N
1 ) be

the gain{to{go,

c(j; aj;u
N
j ) =

NX
k=j

ukxk = xjuj + c(j + 1; aj+1;u
N
j+1) :

Note that xj is known when uj has to be chosen. Two
on{line decision policies are considered in Section 2,
which aim at maximizing the gain{to{go. Their as-
ymptotic behaviour (N ! 1) is studied in Section
3. Special attention is devoted to the optimal (closed{
loop) policy. The case where the distribution of the
xk's is unknown is considered in Section 4.

2. DECISION POLICIES

The xk's are assumed to be independent non{negative
random variables with probability measure �(�). We
shall denote F (�) the c.d.f. of x, Ef:g the expectation



w.r.t. x, and p̂(s) = 1� F (s), x̂(s) =
R1
s

x�(dx). The
measure �(�) is assumed to be such that Efxg <1. At
step j the state of the decision process is summarized in
Ij = (j; aj). Only adaptive (or feedback) deterministic
decision policies will be considered, i.e. policies such
that, at step j, uj is a deterministic function of Ij. The
two policies to be considered share some properties.
Assume �rst that one reached a situation where aj +
N � j + 1 � n, which means that retaining every item
till the end would make a total of no more than n items
selected. It is then optimal to select all items, that is

aj +N � j + 1 � n) uk = 1; k = j; : : : ; N ; (3)

which gives equality in (2). Assume now that n items
have already been selected. One obviously has

aj = n) uk = 0; k = j; : : : ; N : (4)

Only the case n � N + j � 1 < aj < n thus remains
to be treated. A �rst suboptimal approach is to choose
the decision sequence in open{loop, which ignores the
fact that future decisions uk, k > j could make use of
information Ik, see, e.g., [1].

2.1. Open{loop feedback

At step j, with n � N + j � 1 < aj < n, uj is chosen
so as to maximize the expected gain{to{go, that is

ûj = arg max
u2f0;1g

uxj + Efc(j + 1; aj+1;u
N
j+1)g ;

with uNj+1 a �xed decision policy for future steps, that
is function of Ij only. This restriction yields

Efc(j + 1; aj+1;u
N
j+1)g = (n� aj+1)Efxg ;

with aj+1 = aj + 1 if u = 1 and aj+1 = aj otherwise.
The optimal policy is thus as follows:

ûj(Ij) =

�
0 if xj � Efxg or aj � n ;
1 otherwise.

The choice ûj(Ij) = 0 when xj = Efxg is arbitrary.
The open{loop feedback{optimal decision rule thus re-
lies on the comparison of xj with a �xed threshold,
here the expected value of x. We can also consider
more general decision rules using a �xed threshold s:

ûsj(Ij) =

�
0 if xj � s or aj � n ;
1 otherwise.

(5)

The expected gain{to{go obtained with such a policy
will be denoted by Efĉs(j; aj)g. It satis�es the recur-
rence equation

Efĉs(j; aj)g = x̂(s) + p̂(s)Efĉs(j + 1; aj + 1)g

+[1� p̂(s)]Efĉs(j + 1; aj)g : (6)

The two cases (3) and (4) respectively give Efĉs(j; n+
j � N � 1)g = (N � j + 1)Efxg and ĉs(j; n) = 0 for
all xj. The expected gains Efĉs(j; n� i)g can then be
computed from the recurrence above.

2.2. Closed{loop optimal decisions

We use a dynamic programming approach, see Section
4 and [2] for more details. Denote the optimal expected
gain{to{go at step j by ~c(j; aj). When aj < n it satis-
�es the recurrence equation

~c(j; aj) = max
u2f0;1g

uxj + Ef~c(j + 1; aj+1)g ;

with aj+1 = aj + 1 if u = 1 and aj+1 = aj otherwise.
The optimal decision is thus

~uj(Ij) =

8<
:

0 if xj � Ef~c(j + 1; aj)g
�Ef~c(j + 1; aj + 1)g or aj � n ;

1 otherwise,
(7)

which gives

~c(j; aj) = max[xj+Ef~c(j+1; aj+1)g; Ef~c(j+1; aj)g] :

This yields the following backward recurrence equation
for Ef~c(j; aj)g:

Ef~c(j; aj)g =

x̂[Ef~c(j + 1; aj)g �Ef~c(j + 1; aj + 1)g]

+p̂[Ef~c(j + 1; aj)g � Ef~c(j + 1; aj + 1)g]

�Ef~c(j + 1; aj + 1)g)

+[1� p̂(Ef~c(j + 1; aj)g �Ef~c(j + 1; aj + 1)g]

�Ef~c(j + 1; aj)g : (8)

The two cases (3{4) still give ~c(j; j + n � N � 1) =
(N�j+1)Efxg and ~c(j; n) = 0 for all xj . The optimal
decision (7) at step j is obtained by comparing xj to the
threshold Ef~c(j+1; aj)g�Ef~c(j+1; aj+1)g, which is
a function of j and aj . The optimal thresholds Ef~c(j+
1; n� i)g�Ef~c(j+1; n� i+1)g can thus be computed
from the recurrence above.

3. PERFORMANCE CHARACTERISTICS

3.1. Fixed threshold

For any step j, characterized by Ij = (j; aj), denote

the expected gain{to{go Efĉs(j; aj)g by �̂km, with k =
n�aj the current storage capacity and m = N+1�j�
n + aj the number of steps{to{go before reaching the
situation (3). One thus gets with this new notation:

�̂k0 = kEfxg 8k � 0 ;

�̂0m = 0 8m � 0 ; (9)



and to the backward recurrence (6) corresponds the
forward recurrence:

�̂km = x̂(s) + p̂(s)�̂k�1m + [1� p̂(s)]�̂km�1 : (10)

The analytic expression of �̂km is then as follows [5].

Theorem 1 For any m; k � 0,

�̂km = Efxg[1� p̂(s)]m
k�1X
j=0

p̂j(s)(k � j)Cjm+j�1

+x̂(s)
k�1X
j=0

p̂j(s)
m�1X
l=0

[1� p̂(s)]lCjl+j : (11)

The limiting behaviour of �̂km when m tends to in�nity
is given by the following theorem, see [5].

Theorem 2 For any �xed k � 0 and any s such that
p̂(s) > 0 the decision policy (5) is such that

lim
m!1

�̂km = kx̂(s)=p̂(s) : (12)

3.2. Optimal decisions

We use notations similar to previous section, and de-
note the optimal expected gain{to{go Ef~cs(j; aj)g by
~�km, with k = n� aj and m = N + 1� j � n+ aj. The
two situations (3) and (4) now give

~�k0 = kEfxg 8k � 0 :
~�0m = 0 8m � 0 : (13)

Next theorem gives the limiting performances of the
optimal decision rule when the support of the proba-
bility measure �(�) is bounded from above [5].

Theorem 3 Assume that �M = minfxjF (x) = 1g <
1. Then for any �xed k � 0

lim
m!1

~�km = k �M : (14)

From the theorems above, the performances of the op-
timal policy can be far superior to those of the open{
loop decisions, e.g. when the probability measure �(�)
has a density with thin tail. Consider now the case of
a measure with density '(�) having an in�nite support.
One can show that limm!1 ~�km =1 for any k > 0, so
that in this case the optimal policy (7) will outperform
any open{loop policy (5). Analytic results can be ob-
tained in the case where the tail of '(�) is exponentially
decreasing [5].

Theorem 4 Assume that the measure �(�) has a den-
sity '(�) which satis�es: 9x0 such that 8x > x0,

'(x) = a exp(�bx) : (15)

Then for any �xed k > 0

~�km =
k logm

b
+

1

b
log(

ak

bkk!
) + o(1) ; m!1 :

One can show, moreover, that exponentially decreasing
tails are the only ones such that s2m � s1m tends to a
constant c 6= 0 when m tends to in�nity [5], where
skm = ~�km � ~�k�1m+1 corresponds to the optimal threshold
in the decision rule (7). When the tail of '(�) is not
exponentially decreasing, numerical integration can be
used to compute x̂(s) and p̂(s). Heavier the tail of '(�),
faster the increase of ~�km as m grows with k �xed.

4. ON{LINE ESTIMATION OF THE

DISTRIBUTION

In previous sections, optimal decisions were derived
from the knowledge of �(�). We assume now that �(�) is
unknown and estimated on{line, with �̂j the measure
estimated at time j (after xj has been observed). We

denote Jj = (j; aj;x
j
1) the information used at time j

for both estimation and decision. An important fea-
ture of the problem is that decisions are neutral with
respect to estimation (see [3] for a de�nition of neu-
trality in control problems): the sequence fxkg is ob-
served whatever the decision sequence fukg, and deci-
sions have no e�ect on the accuracy of the estimation
of the distribution. The problem to be solved at step j
can be written as

max
uj2Uj

[ujxj + Êjf max
uj+12Uj+1

[uj+1xj+1 + � � �

ÊN�2f max
uN�12UN�1

[uN�1xN�1

+ÊN�1f max
uN2UN

[uNxNg]g � � �]g] ;

where Êkf:g denotes Ef:jJkg and

Uk =

�
f0g if ak � n ;
f0; 1g otherwise.

It seems particularly di�cult to derive the optimal
policy for N > 3, n > 1. We thus only consider de-
cisions based on forced certainty equivalence: at step
j, ~uCEj (Jj) is determined as in Section 2.2, with �(�)

replaced by �̂j(�), that is ~uCEj (Jj) = ~u(Ijj� = �̂j).
We show in [5] that, in spite of the neutrality property,



this forced certainty equivalence policy is suboptimal,
which contradicts a conjecture by Patchell and Jacobs
[4] (see also [1]). We use for �̂j the empirical distribu-
tion of the xk's, initialized byM random samples. Each
expected value Êkf:g is thus based on k+M samples.

Example:

Assume that the true measure ��(�) has the trun-

cated normal density '(x) =
p
2

�
p
�
exp(� x2

2�2
), x � 0.

We take N = 100, n = 10, and use the empirical dis-
tribution of the xk's to evaluate expected values Êkf:g.
Five random samples x�4; : : : ; x0 are used for the ini-
tialization. 500 repetitions of the experiment led to the
results in Table 1.

EfJN (uN1 )g stdfJN (uN1 )g
uj = ~uCEj (Jj) 19.2 1.8
uj = ûCEj (Jj) 13.4 2.0

Table 1: Empirical means and standard{deviation of the

cumulative gains (1) for the certainty{equivalence

closed{loop and open{loop feedback policies (500

repetitions).

The values of the optimal expected gain{to{go ~c(1; 0)
and open{loop expected gain ĉ(1; 0) for � = �� are re-
spectively 19.79 and 13.66. �

The example above shows that the decrease of per-
formances due to the estimation of the distribution can
be marginal. Note, however, that initialization may be
crucial for a particular run: a bad choice for �̂0 may
produce the selection of �rst items proposed, with small
associated values of x, before the empirical distribu-
tion is corrected. It seems advisable for that reason to
choose M not too small (M = 5 in Example 3). The
measure �(�) could also be parameterized, e.g. with a
density '(x) = '(x; �), and � estimated on{line (see
the case x = !2(�; z) in the introduction). Again, cer-

tainty equivalence (� replaced by �̂j estimated from x
j
1

at time j) would give a solution easy to implement but
in general suboptimal.

5. FURTHER DEVELOPMENTS AND

CONCLUSIONS

The optimal decision rule for the maximization of the
sum of n i.i.d. variables in a sequence of length N has
been derived. Its superiority over an open{loop feed-
back policy has been evidenced. The asymptotic be-
haviours of both policies have been considered in the
case where n is �xed while N tends to in�nity. Fur-
ther considerations could concern the case where both
n and N tend to in�nity, with say n=N �xed.

The case where the variables are dependent deserves
further studies. It would also be of special interest
to study how these results could be extended to the
case where the criterion to be maximized is not addi-
tive. For instance, in the multidimensional case, one
may wish to maximize det

Pn

i=1!(�
0; zki)!

T (�0; zki),
with random zk's, !(�; z) = @f(�; z)=@� and � p-
dimensional.

Certainty equivalence has been forced in the case
where the distribution of the random variables is un-
known. This approach is not optimal, although the
problem can be stated as neutral. Quantifying the re-
sulting loss of optimality then seems a di�cult but chal-
lenging problem.
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