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Abstract

In this paper, we present a method to identify channels
with both Doppler and time shifts using mixed training
signals. The training signals we use consist of two parts,
where one part is a constant and the other part is a con-
ventional training signal, such as a pseudo-random signal.
These two parts may be separated in either the time or
the frequency domain. We provide a necessary and suf-
�cient condition on the channel identi�ability in terms of
the time and Doppler shifts when the mixed training sig-
nals are used. It can be shown that the condition holds
almost surely in most cases of interests in practice. Some
numerical examples are also presented.

1 Introduction

Doppler and time shifts (or delays or spread) usually
occur in wireless mobile digital communication systems
with high speed transmission, which often causes prob-
lems of channel impairments. Due to the Doppler shifts of
moving vehicles, the channel is usually modeled as a time
variant linear system and is not as well studied as a time-
invariant linear channel is. There have been a tremendous
amount of researches on time-invariant linear system iden-
ti�cation with both blind and non-blind (using training
signals) fashions. This is, however, not equally the case for
time-variant linear system identi�cation. Some researches
on this topic have appeared, such as [1-5], and increasing
attentions have being paid mainly because of the need of
wireless digital high speed data communications.

In this paper, we focus on the problem of the channel
identi�cation in the presence of both Doppler and time
shifts by using training signals. Speci�cally, the following
channel model studied in [1] is used. Let x(t) and y(t) be
transmitted and received signals, respectively. Then

y(t) =

NpX
k=1

�kx(t� �k)e
j!kt + n(t); (1.1)

where �k, �k, and !k are the amplitude, the time shift, and
the Doppler shift of the kth multipath component in the
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channel, respectively, and Np is the number of the total
multipath components, and n(t) is the channel additive
noise. The Doppler shifts !k � 2v!c=c with the carrier
frequency !c, the velocity v of the moving object, and the
velocity c of light. The channel identi�cation here is to
estimate the unknown parameters f(�k; �k; !k); 1 � k �
Npg through the knowledge of the transmitted and the
received signals x(t) and y(t) in (1.1).

In this paper, we propose to use mixed training signals
in the above channel identi�cation, which have two parts
separated either in the time domain or in the frequency
domain. One part of the training signal is a constant and
the other part is a pseudo-random signal or other type of
linear time-invariant (LTI) channel identi�cation training
signals, such as chirps [6] in a low SNR environment. The
constant part is used to identify the Doppler shifts !k and
the other part is used to identify the time shifts �k. The
corresponding multipath amplitudes �k are identi�ed us-
ing both parts. The synchronization between the detected
Doppler and time shifts is also done by using the both
parts. Note that not all channels in (1.1) can be identi�ed
with this approach. A necessary and su�cient condition in
terms of the Doppler and time shifts on the channel iden-
ti�ability is given. It turns out that almost all channels
(1.1) are identi�able with the approach proposed in this
paper in most cases of practical interests. The identi�abil-
ity is built upon the concept of cycles introduced for the
Doppler and time shifts.

2 Channel/Mixed Training Signal
Analysis and Identi�ability

Let us �rst analyze the received signal y(t) in (1.1). To
analyze the identi�ability, for convenience we assume the
additive noise n(t) in the model (1.1) does not appear, i.e.,
n(t) = 0. Suppose the transmitted training signal x(t) is
a constant, say 1. Then (1.1) becomes

y(t) =

NpX
k=1

�ke
j!kt: (2.1)

If all Doppler shifts !k, k = 1; 2; :::; Np, are distinct, then,
by taking a certain discrete Fourier transform for a seg-
ment of the received signal y(t), all Doppler shifts !k and
multipath amplitude coe�cients �k may be detected. If
there are duplications of the Doppler shifts !k, all the (dis-
tinct) Doppler shifts can still be detected with the above



method but not all the coe�cients �k. For instance, as-
sume !1 = !2 and it is not equal to other !k. In this case,
equation (2.1) becomes

y(t) = (�1 + �2)e
j!1t +

NpX
k=3

�ke
j!kt: (2.2)

In this case, only the sum �1 + �2 of the two coe�cients
�1 and �2 can be detected, which is not enough to detect
their individual values �1 and �2. However, the Doppler
frequencies f!1; !2; :::; !Npg are still detectable.

Similarly the time shifts �k can be detected in the fre-
quency domain of (1.1) as follows. Taking the Fourier
transforms of (1.1) we have

Y (ej!) =

NpX
k=1

�kX(! � !k)e
i�k!; (2.3)

where Y (ej!) and X(ej!) are the Fourier transforms of
y(t) and x(t), respectively. Suppose X(ej!) is a constant,
say 1. Then

Y (ej!) =

NpX
k=1

�ke
i�k!: (2.4)

If all time shifts �k, k = 1; 2; :::; Np, are distinct, all these
time shifts �k and the coe�cients �k can be detected by
taking an inverse discrete Fourier transform of (2.4). Sim-
ilar to the previous time domain analysis, it is not possible
to detect all the coe�cients �k when not all the time shifts
�k are distinct. Furthermore, when for all index k, either
!k has no repetitions or �k has no repetitions, the cor-
responding coe�cients �k can be detected by the above
approach.

When both !k, 1 � k � Np, and �k, 1 � k � Np,
are distinct, the order of the coe�cients �k also gives the
order for both !k, 1 � k � Np, and �k, 1 � k � Np. When
either !k, 1 � k � Np, or �k, 1 � k � Np, has repetitions,
two sets of coe�cients �k can be solved from (2.1) and
(2.4), and the orders for !k and �k can also be determined
from the matching of the corresponding DFT and IDFT
coe�cients �k.

Based on the above analyses, let us consider a train-
ing signal x(t) that has two parts either separated in the
time domain or in the frequency domain. Without loss of
generality we only consider the time domain separation.

When x(t) has two parts separated in the time domain,
it has the following form:

x(t) =

�
x0; T0 < t < T1;
x1(t); T1 < t < T2;

(2.5)

where x0 is a nonzero constant and x1(t) is a conventional
pseudo-random signal or the delta pulse, i.e., its Fourier
transform X1(e

j!) is a constant (
at). In the detection,
these two parts are processed separately.

For simplicity we assume that the two part information
is available at the same time interval, for example, [0; T ],
and

y1(t) =

NpX
k=1

�ke
j!ktx0; t 2 [0; T ]; (2.6)

and

y2(t) =

NpX
k=1

�ke
j!ktx1(t� �k); t 2 [0; T ]: (2.7)

The goal here is to identify the unknown parameters
f(�k; �k; !k); 1 � k � Npg from the above equations (2.6)
and (2.7). In the following, we also assume that the sam-
pling interval length of the received signals y1(t) and y2(t)
is small enough so that all the Doppler shifts !k in (2.1)
and the time shifts �k in (2.4) can be detected by using the
discrete Fourier transform (DFT) and the inverse discrete
Fourier transform (IDFT) as discussed above.

By the above discussions, we have the following su�-
cient condition for the identi�ability.
Theorem 1: Let x(t) be a training signal with the two
parts as described above. Let I and J be any two integer
sets such that they do not intersect, i.e., I \ J = �, and
their union I [ J = f1; 2; :::; Npg. If all the Doppler shifts
!k for k 2 I are distinct and !i 6= !j for i 2 I and j 2
J , and all the time shifts �k for k 2 J are distinct and
�i 6= �j for i 2 I and j 2 J , then the unknown parameters
f(�k; �k; !k); 1 � k � Npg are detectable by applying the
DFT in the time domain and the IDFT in the frequency
domain to the two parts of the received data corresponding
to the two parts of the training signal, respectively.

A proof was given in [7].
An obvious case in Theorem 1 is as what was mentioned

earlier, i.e., either all !k, 1 � k � Np, or all �k, 1 � k �
Np, are distinct, which corresponds to the case of I = �
or J = � in Theorem 1. The identi�ability problem now
arises from the possible duplications of the Doppler shifts
!k and the time shifts �k as discussed in (2.2). In this
case, ambiguities might exist in the detected amplitude
coe�cients �k. In the following, we want to provide a
necessary and su�cient condition on the identi�ability of
the coe�cients �k in terms of the Doppler shifts !k and
the time shifts �k.

To study the identi�ability of the coe�cients �k using
the DFT of y1(t) in (2.6) and the IDFT of the Fourier
transform of y2(t) in (2.7), let us �rst see an example.
Consider the case Np = 4, !1 = !2 6= !3 = !4, and
�1 = �3 6= �2 = �4. In this case, using the DFT and
IDFT to y1(t) and Y2(e

j!) the following summations can
be detected, i.e., �i and 
i for i = 1; 2 can be detected:

�1 + �2 = �1 (2.8)

�3 + �4 = �2 (2.9)

�1 + �3 = 
1 (2.10)

�2 + �4 = 
2: (2.11)

Clearly, it is not possible to solve for �i for i = 1; 2; 3; 4
from the above equations. The mathematical reason for
this is of course that the coe�cient matrix of these equa-
tions does not have a full rank. There is, however, another
intuitive reason as follows. Let us start with the unknown
�1 in (2.8): �1 is connected to �2 via (2.8); �2 is connected
to �4 via (2.11); �4 is connected to �3 via (2.9); and �nally
�3 is connected back to �1 via (2.11). One can see that



there is a cycle between the unknowns �i for i = 1; 2; 3; 4,
as shown in Fig. 1, which causes to the unsolvability of
the coe�cients �k.

α1

α4

α2

α3

Figure 1: A cycle between �k.

It was shown in [7] that the above cycle pattern causes
the unsolvability is true not only for the above particular
example but also for general cases. Notice that the cycle
length in Fig. 1 is 4. A general setting of the repetitions
of !k and �k is as follows. Let I1,..., If be a partition of
the integer set

I
�
= f1; 2; :::; Npg

such that all the Doppler shifts !k for k 2 Il for any �xed
l are equal, i.e.,

!k = ~!l for all k 2 Il; (2.12)

where \partition" means any two sets Il1 and Il2 for l1 6= l2
do not intersect, i.e., Il1\Il2 = � for l1 6= l2, and the union
of all Il is the integer set I, i.e.,

f[
l=1

Il = I;

and each set Il is not empty. Let J1,..., Jg be another
partition of the integer set I such that all the time shifts
�k for k 2 Il for any �xed l are equal, i.e.,

�k = ~�l for all k 2 Jl: (2.13)

Similar to the discussion in (2.2), the following summa-
tions can only be detected from the DFT of y1(t) in (2.6)
and the IDFT of the Fourier transform Y2(e

j!) of y2(t) in
(2.7):

X
k2Il

�k = �l; 1 � l � f; (2.14)

X
k2Jl

�k = 
l; 1 � l � g; (2.15)

where �l and 
l are the detected values.

Theorem 2: Channel (1.1) with Doppler and time shifts
and a mixed training signal as described before is identi�-
able if and only if there is no any cycles as shown in Fig.
1 for the variables in (2.14)-(2.15) with length at least 4.

A proof is given in [7] by precisely introducing the con-
cept of cycles for variables �k or the Doppler and time
shifts !k and �k.

3 Probability Analysis of the
Identi�ability

In this section, we show the probability for the channel
identi�ability, i.e., for the necessary and su�cient condi-
tion in Theorem 2 to hold. The condition is in terms of
the Doppler and time shifts !k and �k. Since in practical
digital processing, these Doppler and time shifts are quan-
tized to �nite values. For convenience, we assume that
there are total Md possible di�erent values of the Doppler
shifts and total Mt possible values for the time shifts. In
other words, each !k may take one of Md di�erent values

Drange = fvd;1; vd;2; :::; vd;Md
g; (3.1)

and each �k may take one of Mt di�erent values

Trange = fvt;1; vt;2; :::; vt;Mtg: (3.2)

For example, Drange = f�50Hz;�49Hz; :::; 50Hzg and
Trange = f0�s; 1�s; :::; 100�sg. The two numbers Md and
Mt can be determined when the Doppler spread width fm
and the rms time spread width �� are known for a given
channel.

As we mentioned earlier, we have a su�cient condition
in Theorem 1 and a necessary and su�cient condition in
Theorem 2. These two conditions coincide for Np = 1; 2; 3.
Although the probability expression for the su�cient con-
dition in Theorem 1 to hold for a general Np is compli-
cated, the probabilities for the conditions in Theorems 1-2
to hold were calculated in [7] when Np = 4.

Three probability curves are plotted in Fig. 2, where
we set Md =Mt and the x-axis indicates the variable Md,
which is from 4 to 101. The �rst curve is for the obvious
case in Theorem 1 when all !k or all �k are distinct. One
can clearly see that the probability for the necessary and
su�cient condition in Theorem 2 is above the one for suf-
�cient condition in Theorem 1. When the total numbers
Md and Mt of the possible Doppler and time shifts are
large relative to the total number Np of multipath compo-
nents in a channel, the necessary and su�cient condition
in Theorem 2 holds almost surely, i.e., the probability is
very close to 1.

Although in the above we only studied the case when
Np = 4, for a general Np the probability for the neces-
sary and su�cient condition in Theorem 2 to hold can be
approximated by the following formula, [7].

Probability (the condition in Theorem 2 holds)

� 1�

�
Md

2

��
Np

4

��
4
2

��
Mt

2

��
2
1

�
�

MdMt

Np

� ; (3.3)

which are very close to 1 when Md and Mt are relatively
larger than Np.

4 Numerical Simulations
In the following simulations, we use Np = 4, and

!k
2�

2 Drange = f�50Hz;�49Hz; :::; 50Hzg; k = 1; 2; 3; 4;
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Figure 2: Probabilities for the conditions in Theorems

1-2 to hold when Np = 4.

and

�k 2 Trange = f0�s; 1�s; :::; 100�sg; k = 1; 2; 3; 4:

The Doppler and time shifts !k and �k for k = 1; 2; 3; 4 are
randomly chosen from the above sets Drange and Trange,
respectively, such that all pairs (!k; �k) for k = 1; 2; 3; 4 are
distinct. The amplitude coe�cients �k for k = 1; 2; 3; 4 are
randomly chosen from Gaussian random processes with all
possible real values.

For the �rst piece y1(t) of data, the sampling rate is
chosen as 1=T = 128, i.e., �63 � l � 64,

y1[l] = y1(l=128) =

NpX
k=1

�ke
jl!k=128 + n1(l=128): (4.1)

For the second piece Y2(!) of data, the sampling rate is
chosen 1=T = 128=(2�), i.e., 0 � l � 127,

Y2[l] = Y2(2�l=128) =

NpX
k=1

�ke
jl2��k=128 + n2(2�l=128):

(4.2)
Fig. 3 shows the curves of the ratios of the mean square
errors (MSE) of the true !k, �k, and �k, and their detected
values over their mean powers. The x-axis is the ratios
of the mean powers of the amplitude coe�cients �k over
the variance of the additive noise ni, i = 1; 2, in (4.1)-
(4.2). In this Fig. 1, 10000 Monte Carlo simulations are
implemented.

5 Conclusions

In this paper, we proposed a channel identi�cation algo-
rithm using a mixed training signal, where the channel has
both the Doppler shifts and time shifts. The mixed train-
ing signals consist of two parts with one part constant and
the other part a conventional training signal, such as a
pseudo-random signal. These two parts of signals may be
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Figure 3: MSE for the detected !k, �k, and �k, vs.

the SNR.

separated either in the time domain or in the frequency
domain. A necessary and su�cient condition was given
for the channel identi�ability based on the mixed training
signal approach. A probability analysis for the identi�a-
bility was presented. It turns out that almost all channels
of practical interests are identi�able. Some numerical ex-
amples were presented.
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