
1-D CONTINUOUS NON-MINIMUM PHASE RETRIEVAL USING THE

WAVELET TRANSFORM

Amy E. Bell

Dept. of ECE
Virginia Tech

Blacksburg, VA 24061-0111

Andrew E. Yagle

Dept. of EECS
University of Michigan

Ann Arbor, MI 48109-2122

ABSTRACT

The phase retrieval problem arises when a signal must be
reconstructed from only the magnitude of its Fourier trans-
form; if the phase information were also available, the signal
could simply be synthesized using the inverse Fourier trans-
form. In continuous phase retrieval, most previous solutions
rely on discretizing the problem and then employing an it-
erative algorithm. We avoid this approximation by using
wavelet expansions to transform this uncountably in�nite
problem into a linear system of equations. The wavelet
bases permit a solution by incorporating a priori signal in-
formation and they provide a structured system of equa-
tions which results in a fast algorithm. Our solutions ob-
viate the stagnation problems associated with iterative al-
gorithms, they are computationally simpler and more sta-
ble than previous non-iterative algorithms, and they can
accommodate noisy Fourier magnitude information. This
paper develops our 1-D continuous, non-minimum phase
retrieval algorithm and illustrates its e�ectiveness with nu-
merical examples.

1. INTRODUCTION

Reconstructing a 1-D signal with compact support from
the modulus of its Fourier transform is known as the phase
retrieval problem because if we also had the phase infor-
mation, we would simply synthesize the signal using the
inverse Fourier transform. This problem is associated with
various applications including antenna design, �lter design,
and the characterization of astronomical objects|see [6] for
references.

The squared Fourier modulus corresponds to the Fourier
transform of the autocorrelation function of the signal x(t).
Thus, the 1-D phase retrieval problem can be described by

r(t) =

Z
x(u)x(u� t)du; �T � t � T

where the autocorrelation function r(t) is known. The as-
sumption that the signal has compact support permits its
Fourier transform to be sampled in frequency. Furthermore,
if the signal is assumed to be bandlimited, it can be sam-
pled in time as well. This corresponds to the 1-D discrete

phase retrieval problem in which the Fourier transform is
replaced by the discrete Fourier transform (DFT). Conven-
tional numerical solutions of the 1-D continuous phase re-
trieval problem amount to discretizing r(t) and employing

iterative phase retrieval algorithms to reconstruct a discrete
time signal. However no signal can be both time and ban-
dlimited. Moreover, these iterative algorithms exhibit stag-
nation (i.e. convergence) problems (see [4] for the original
algorithm and refer to [2] for its more recent descendants).
Therefore other solutions are sought.

We present a new approach to solving the 1-D contin-
uous phase retrieval problem which avoids these approxi-
mations and problems. Our algorithms utilize the wavelet
representation of a continuous time signal in order to trans-
form the problem into a discrete, linear system of equations.
The advantages of this approach include: a more accurate
representation of the continuous time signal; the incorpora-
tion of a priori signal information which permits a solution;
a structured system of equations which permits a fast algo-
rithm; elimination of the convergence problems associated
with iterative phase retrieval algorithms; and, the accom-
modation of noisy Fourier magnitude information.

In this paper, Section 2 presents a review of the con-
tinuous time phase retrieval problem, our minimum phase
solution, and the wavelet expansion of a 1-D signal. The
non-minimum phase solution is derived in Section 3; its re-
lationship to the minimum phase solution via an underlying
di�erential equation is developed. Section 4 presents sev-
eral illustrations of our algorithm and Section 5 concludes
with the contributions of our work.

2. REVIEW: MINIMUM PHASE RETRIEVAL

AND THE WAVELET TRANSFORM

2.1. The 1-D Phase Retrieval Problem

The 1-D phase retrieval problem can be described as follows.
Let x(t) be a continuous time signal. Given that x(t) is
nonzero only on the interval [0; T ] and given the magnitude
of its Fourier transform jX(
)j = jFx(t)j, reconstruct the
signal x(t).

Since we only have the modulus information, M(
) =
jX(
)j, we consider M2(
) = jX(
)j2 with the analytic
extension

M
2(s) = X(s)X�(�s�):

M2(s) is an entire function of exponential type which im-
plies that it is completely speci�ed by its complex zeros [5].
Moreover, the inverse Fourier transform of M2(
) is the
autocorrelation function r(t).



As in discrete phase retrieval, there are both trivial and
non-trivial ambiguities in this 1-D, continuous time phase
retrieval problem. The trivial ambiguities include constant
scale factors and translations. However, the problem is am-
biguous beyond these trivial factors because the complex
zeros of M2(s) occur in negative complex conjugate pairs
(i.e., the zeros fsg ofX(s) and the zeros f�s�g of X�(�s�)).
For instance, if M2(s) has N complex conjugate pairs of
zeros, then there are 2N non-trivial solutions (i.e. 2 ways
of choosing one zero from each of the N conjugate pairs).
Moreover, of all these non-trivial solutions, there is only
one minimum phase solution|that with all its zeros in the
open left half plane. We will use this minimum phase solu-
tion (along with a priori signal information) to determine
the desired non-minimum phase signal.

2.2. Our Minimum Phase Retrieval Solution

In [1], we showed that given jX(
)j, we can �nd the cor-
responding minimum phase signal x(t). This problem was
shown to correspond to the Krein integral equation,

�(t� s) = x(t� s) +

Z t

�t

x(t� u)k(ju� sj) du; 0 � jsj � t

(1)
where k is known and x is the unknown, minimum phase
(i.e. causal) signal with compact support. Thus, solving
the Krein integral equation for x(t) is equivalent to solving
the 1-D minimum phase retrieval problem.

2.3. Discrete Orthonormal Wavelet Transform

The discrete orthonormal wavelet transform X(m;n) of a
continuous square-integrable function x(t) is

X(m;n) =

Z
1

�1

x(t)2m=2 (2mt� n) dt (2)

x(t) =

1X
m=�1

1X
n=�1

X(m;n)2m=2 (2mt� n) (3)

where  (t) is the wavelet basis function [3].  (t) is orthog-
onal (in the sense of the usual L2 inner product) to its scal-
ings  (2mt) (dilations for m < 0; compressions for m > 0)
and to the translations  (2mt� n) of its scalings. The set

of all scalings and translations f2m=2 (2mt�n);m;n 2 Zg
forms a complete orthonormal set.

3. OUR NON-MINIMUM PHASE RETRIEVAL

SOLUTION

3.1. Relationship to the Minimum Phase Solution

Given this minimum phase signal, what additional infor-
mation about the desired non-minimum phase signal do we
need in order to reconstruct it? X(s), the unique analytic
extension of X(
) to the complex s-plane, can be com-
pletely characterized by its complex zeros [5]. If we order
the zeros of X(s) such that the �rst k are in the right half
plane (RHP) and the remainder are in the open left half
plane (OLHP), then we can order the zeros of XMIN (s)
such that its �rst k zeros correspond to those k RHP zeros

of X(s) 
ipped into the OLHP. The remaining XMIN (s)
zeros are the same as the remaining X(s) zeros. The zeros

are 
ipped byXFLIP (s) =
Qk

i=1
(s�si) where si < 0 means

that all the zeros of XFLIP (s) are in the OLHP. Thus, X(s)
and XMIN (s) are related|to within a constant|by

X(s) = XMIN (s)
(�1)kXFLIP (�s)

XFLIP (s)
(4)

where (�1)kXFLIP (�s) =
Qk

i=1
(s + si) are the zeros of

XFLIP (s) 
ipped into the RHP.
Cross-multiplying and denoting the coe�cients ofXFLIP

by (�1)k�lxlF gives"
kX
l=0

(�1)k�lxlF s
l

#
X(s) =

"
kX
l=0

x
l
F s

l

#
XMIN (s): (5)

In the time domain, this corresponds to the di�erential
equation (assuming initial conditions are zero)

kX
l=0

(�1)k�lxlF
dlx(t)

dtl
=

kX
l=0

x
l
F

dlxMIN (t)

dtl
: (6)

3.2. Linear System of Equations

We use the result of the previous section along with the
discrete wavelet transform of the derivative of a signal to
arrive at the desired linear system of equations. First we
take the discrete wavelet transform of both sides of (6)

kX
l=0

(�1)k�lxlFDWT

�
dlx(t)

dtl

�
=

kX
l=0

x
l
FDWT

�
dlxMIN (t)

dtl

�
:

Furthermore, we de�ne

	(l)(i; j;m; n) = (�1)l2
((2l+1)m+i)

2

Z
 (2it�j) (l)(2mt�n) dt;

(7)
to arrive at our desired result

kX
l=0

(�1)k�lxlF

1X
i=�1

1X
j=�1

X(i; j)	(l)(i; j; m; n) =

kX
l=0

x
l
F

1X
i=�1

1X
j=�1

XMIN (i; j)	
(l)(i; j; m; n): (8)

In equation (8), XMIN (i; j) and 	(l)(i; j; m; n) can be cal-
culated while xlF and X(i; j) are unknown. However, if
the left-hand side is zero for some scales and translations,
the 
ip coe�cients xlF can be found from the null space of
a known matrix on the right-hand side. Then our desired
non-minimum phase signal may be found from equation (4).

3.3. Zeros on the Left-hand Side

Smooth regions of a signal map to zero wavelet coe�cients
at �ne enough scales. Of course X(i; j) = 0; 8(i; j) is not
interesting, but the idea is to expand x(t) such that X(i; j)
has bands of zeros in it for some (i; j). Then equation (8)



is zero on the left-hand side and known on the right-hand
side for these scales and translations. The 
ip coe�cients
can then be determined from this known submatrix. To
understand this, consider the following example.

Let x(t) be a signal with compact support on [0; 1] and
let xMIN (t) be its corresponding minimum phase signal
(also with compact support on [0; 1]). Furthermore, assume
we know that x(t) is constant on [0; 1

4
].

The Haar wavelet expansions of x(t) and xMIN (t) have
the following structures

X =

"
0 � � � 0 0 0 0
0 � � � 0 0 0 0
0 0 � � � � � �

#

XMIN =

"
� � � � 0 0 0 0
� � � � 0 0 0 0
� � � � � � � �

#
(9)

where the �rst row corresponds to the scaling function at
scale 2 (�(4t)), the second row corresponds to the wavelet
function at scale 2 ( (4t)), and the third row corresponds
to the wavelet function at scale 3 ( (8t)).

At scale m = 3, the Haar basis function has width 1
23

=
1
8
and the translations n = 0 and n = 1 correspond to the

two intervals [0; 1
8
] and [ 1

8
; 1
4
]. Thus, for k = 1, the basis

functions of 	 are completely within the constant region of
x(t) at m = 3; n = 0; 1. This means that X � 	1

3;0 = 0,

X � 	0
3;0 = 0, X � 	1

3;1 = 0, and X � 	0
3;1 = 0. However,

XMIN �	
1
m;n 6= 0 andXMIN �	

0
m;n 6= 0 form = 3;n = 0; 1.

Thus, we have reduced equation (8) to a known system for
these particular (m;n). As a result, we have a known 2x2
system matrix whose null space provides the coe�cients of
XFLIP (s) (10).�

XMIN �	1
3;0 XMIN �	0

3;0

XMIN �	1
3;1 XMIN �	0

3;1

��
x1F
x0F

�
=

�
0
0

�
: (10)

Notice that the width of a signal's smooth region as well as
the width of the chosen wavelet basis function dictate the
formulation of the system matrix.

3.4. Procedure

The following procedure outlines how to obtain the non-
minimum phase solution x(t) of the 1-D continuous phase
retrieval problem.

1. Given jX(
)j and the support of x(t), compute the
minimumphase solution xMIN (t) using the algorithm
in [1];

2. Given the additional information of the number of
zeros to 
ip, k, and that part of x(t)0s support which
is smooth, calculate 	 using (7) and calculate the
wavelet transform of xMIN (t) using (2);

3. At the appropriate scales and translations, formulate
the submatrix of the overall system matrix whose null
space corresponds to the coe�cients of XFLIP (s);
and,

4. Use (4) to reconstruct X(s) (which is equivalent to
reconstructing x(t)).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 1: Example 1: xMIN (t){solid, x(t){dashed.

4. EXAMPLES

In determining which wavelet bases would be `best' in solv-
ing this 1-D, continuous, non-minimumphase retrieval prob-
lem we are primarily concerned with the regularity and sup-
port size properties of the wavelets. In these examples we
compare the Daubechies, N = 7, wavelet basis with the
cubic spline Battle-Lemarie wavelet basis [3].

The DaubechiesN = 7 wavelet basis (DAUB7) has com-
pact support on [0; 13] and is at least twice di�erentiable.
The cubic spline Battle-Lemarie wavelet basis (BL3) has in-
�nite support and may be di�erentiated three times. These
two bases were chosen because they represent the trade-
o�s involved in di�erentiation and compact support: the
numerical di�erentiation for DAUB7 introduces computa-
tional errors not seen in BL3 and the truncation of BL3
introduces an approximation error not seen in DAUB7.

The �rst example we consider is for x(t) = 5
3
[e10tu(�t)+

e�20tu(t)]. Its corresponding minimumphase signal is xMIN(t) =
5[e�10t�e�20t]u(t). XMIN (s) has two poles in the complex
plane at s = �10;�20 and by 
ipping either one or both of
these poles, three non-minimum phase signals can be gen-
erated.

Notice that this is not a compact support signal! xMIN (t)
has in�nite support on the positive real line and x(t) has
in�nite support on the entire real line. However, both sig-
nals are essentially zero for jtj > 1 so that we treat them as
compact signals.

Figure 1 plots these signals. x(t) is the dashed line,
xMIN (t) is the solid line, and the other non-minimum phase
signal corresponding to one 
ipped zero is the dash-dot
line. Notice that x(t) is essentially zero for [0:3; 1]; this is
the `smooth' region of our signal. The other non-minimum
phase signal with one 
ipped zero is not zero or smooth on
this interval.

So we begin the reconstruction. We use the given in-
formation of jX(
)j and compact support [�1; 1] to gener-
ate xMIN (t). Then we use this computed xMIN (t) along
with the given information of k = 1 and the subinterval
[0:3; 1] corresponding to a smooth region in x(t) to generate
the system matrix whose null space gives the coe�cients of
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Figure 2: Example 3: actual and reconstructed x(t).

XFLIP (s). Finally, X(s) is computed using XMIN (s) and
XFLIP (s) and x(t) can be recovered from X(s).

The actual 
ip coe�cients are f1;�10g and the closest
computed 
ip coe�cients using DAUB7 were f1;�9:9975g
while the best approximation using BL3 gave f1;�9:9976g.
The reconstructed x(t) using the computed 
ip coe�cients
of f1;�9:9975g depicted no discernible di�erence between
the true and reconstructed signals.

The second example we considered used the same xMIN (t),
but with k = 2. Here we are trying to �nd the maximum
phase signal xMAX(t) which has a smooth region on the
interval [0; 1] (it is all zero here). Again, the DAUB7 and
BL3 bases performed similarly computing 
ip coe�cients
f1;�30:0658; 200:6724g compared to the actual 
ip coe�-
cients of f1;�30; 200g.

The third and �nal example we considered was similar
to the �rst in that k = 1 and XMIN (s) has two poles;
however, now the poles are closer together at s = �8;�10.

Now x(t) is essentially zero for [0:6; 1]; this is the `smooth'
region of our signal. However the other non-minimumphase
signal with one 
ipped zero is also very close to zero on this
interval. So we expect that the reconstruction of this x(t)
will not be as accurate as in the �rst example when the
poles were farther apart at s = �10;�20.

The actual 
ip coe�cients are f1;�8g and the closest
computed 
ip coe�cients using DAUB7 were f1;�7:5283g
while the best approximation using BL3 gave f1;�7:5323g.
We see that DAUB7 and BL3 generated approximately the
same answers again; however, the computed 
ip coe�cients
are not nearly as accurate here as in the �rst example (an
error of 6.25% compared to 0.025%).

The reconstructed x(t) using the computed 
ip coe�-
cients of f1;�7:5283g is shown in Figure 2. Notice that
despite the inaccuracy of the 
ip coe�cients, it is di�cult
to see a di�erence between the reconstructed signal and the
true signal.

In conclusion, reconstruction of the 1-D, continuous,
non-minimum phase signal worked well in these examples.
The DAUB7 and BL3 bases reconstructed the desired x(t)
similarly well; however, the BL3 had an advantage in that
its support size after compression was larger than that for

DAUB7. Moreover, the BL3 basis required signi�cantly
more computation and storage than the DAUB7 basis due
to its large support size (�BL3(t) is about 3.5 times as large
as �DAUB7(t)). Thus, the compact support of the wavelet
basis appears to be more critical to good performance than
whether the di�erentiation is determined analytically or nu-
merically.

5. CONCLUSION

The results of our work in continuous time phase retrieval
are algorithms which make the following contributions.

1. These algorithms permit a better representation of
the continuous time signal by using basis functions
instead of simply discretizing the signal (i.e. there is
now a choice of basis functions).

2. By using wavelet bases, our algorithms incorporate
a priori signal information which permits a solution,
they represent the problem as a structured system
of equations (thus permitting a fast algorithm), and
they represent self-similar or smooth signals with few
coe�cients.

3. These solutions are not iterative; thus, they avoid
the convergence problems associated with previous
iterative phase retrieval algorithms.

4. These algorithms formulate the problem as a system
of linear equations whose solution is computation-
ally simpler and more stable than previous algorithms
which rely on the analytic properties of the signal.

5. These algorithms can accommodate noisy Fourier mag-
nitude information better than previous algorithms
(via total least squares techniques).
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