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ABSTRACT

The solution of many important signal processing problems
depends on the estimation of the parameters of a Hidden
Markov Model (HMM). Unfortunately, to date the only known
methods for performing this estimation have been iterative,
and therefore computationally demanding. By way of con-
trast, this paper presents a new fast and non-iterative method
that utilizes certain recent `state spaced subspace system
identi�cation' (4SID) ideas from the control theory literature.
A short simulation example presented here indicates this new
technique to be almost as accurate as Maximum-Likelihood
estimation, but an order of magnitude less computationally
demanding than the Baum{Welch (EM) algorithm.

1. INTRODUCTION

A stationary discrete Markov model is one in which a series
of symbols, call them fStg, evolve with time (labeled as t)
to take on values from a set fq1; � � � ; qng and according to a
random law:

PfSt+1 = qj j St = qig = pi;j = [P ]i;j

where P(xjy) is the probability of event x occurring condi-
tional on the event y having occurred, and [P ]i;j = pi;j is a
matrix of these probabilities. Speci�cally, pi;j is the proba-
bility of moving from state number i to state number j, and
since the probability of moving to some state is one, then the
rows of P must sum to one, so that P is a row stochastic
matrix. An important consequence of this is that the vec-
tor e consisting of all ones is a right eigenvector of P with
eigenvalue 1: Pe = e.

A discrete Hidden Markov Model (HMM) is one in which
the states fStg are not directly observed, but instead the
symbols fOtg taking the possible values fy1; � � � ; ymg are
available, and which are only randomly linked to the `un-
derlying' fStg via a law P(Ot = yi j St = qj) = bj(i) = [B]i;j
where, again [B]i;j = bj(i) is a matrix describing the random
nature of the process, this time in terms of the discrete prob-
ability density functions bj(i) that hide the Markov states
fStg according to bj(i) being the probability of observing
the output Ot = yi when the underlying Markov state is the
j'th one St = qj .

�This work was supported by the Australian Research Council
and the Centre for Integrated Dynamics and Control (CIDAC)

Together with the initial probability distribution � : [�]i =
PfS0 = qig the triple � = fP;B; �g completely describes the
HMM. The solution of many signal processing problems such
as speech recognition [3], target tracking, and certain com-
munications problems depends on the use of Hidden Markov
modeling and the associated estimation of the description �
from observations of a physical process.

One obvious approach to �nding these estimates is to use
the well known Maximum-Likelihood method wherein it is
necessary to calculate the probability of an observed output

sequence conditional on � and then choose an estimate b� of
� that maximises this estimate:b� = argmax

�

P(O1; � � � ; ON j �): (1)

Here, it has clearly been assumed that N observations of the
output symbols fOtg are available. The indicated probability
(likelihood) can be calculated by �rst noting that with the

de�nition �t(i) , P(O1; � � � ; Ot; St = qij�)

P(O1; � � � ; Ot j �) =

nX
i=1

�t(i) (2)

where �t(i) may be recursively calculated as

�t+1(j) =

 
nX
i=1

�t(i)pi;j

!
bj(Ot+1): (3)

These equations are well known [3], the point of presenting
them being to emphasise that the maximization of (1) is com-
putationally non-trivial, there being a clear need to perform
N � n2 multiplications in order to calculate the likelihood
associated with a particular �, quite apart from the compu-
tational load of actually iterating on the choice of � to arrive

at the maximizing value b�.
Pertaining to this latter issue, the form of (2) and (3)

make it clear that no closed form solution exists for b� given
by (1) and given this, one of the most popular methods for

instead iteratively �nding b� is the so-called `Baum{Welch'
method [3] which is a particular instance of the Expectation-
Maximisation (EM) algorithm.

Since the main purpose of this paper is to propose an al-
ternative non-iterative approach to �nding an estimate of �,
it is instructive to �rst motivate the attraction of such an al-
ternative by illustrating the performance of the Baum{Welch
procedure on a simple example where �ve hundred samples
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Figure 1: 20 iterations of the Baum Welch algorithm.

of a 2-state Markov chain with state transition probabili-
ties de�ned by p1;1 = 0:3; p2;1 = 0:7 are simulated, and then
`hidden' according to two output symbols being observed and
being related to the underlying states according to the ob-
servation probabilities being b1(1) = 0:8; b2(1) = 0:2.

The likelihood surface for this situation, together with
the �rst 20 iterations of the Baum-Welch algorithm in trying
to �nd the maximum of this surface are shown in �gure 1.
Clearly, for this particular example at least 20 iterations are
required to come close to convergence, which is a serious
computational burden.

The rest of this paper will concern itself with illustrating
a new non-iterative, and computationally cheap algorithm
for estimating discrete state Hidden Markov Models.

2. STATE SPACE DESCRIPTION OF HMM'S

Central to the new methods of this paper is the idea of rep-
resenting the HMM as a linear system in state space form:

xt+1 = P
T
xt + wt (4)

yt = Cxt + �t (5)

where fwtg and f�tg are particular random processes to be
commented on in a moment. For this representation (4),
(5) to work as a HMM description, the state vector xt is
constrained (without loss of generality) to contain all zeros
save for a 1 in the location corresponding to the enumeration
of which state the Markov chain is in at time t. As well, the
observation yt is constrained to be either zero or one. In this
case, the k'th element of the row vector C is the probability
of the output fytg being 1 given that the state xt = qk. That
is, C corresponds to the row of B associated with the output
symbol Ot = 1.

Given this representation, the nature of the random pro-
cesses fwtg and f�tg such that the output fytg is the out-
put of a HMM is not obvious. However, with some calcula-
tion it can be shown that E fwtg = 0; E f�tg = 0 and also
that limt!1 E

�
�2t
	
= Cm � CMCT , limt!1 E

�
wtw

T
t

	
=

M�P TMP whereM is a diagonal matrix with the elements
of the vector m on the diagonal, and m itself is de�ned by
limt!1 E fxtg = ��1 ,m where �1 is the eigenvector of P

T

with eigenvalue 1 and � is a scalar constant. This immedi-
ately gives the second order asymptotic properties of fxtg

and fytg as limt!1 Efy2t g = Cm and

lim
t!1

E

n
xtx

T
t

o
= lim

t!1
diagE fxtg = diag fmg ,M

where diagfxg denotes a diagonal matrix with the elements
of the vector x along the diagonal.

Therefore, HMM's can be a�orded a state space descrip-
tion which is asymptotically wide-sense stationary. The pa-
per now reviews completely separate work from the control
theory literature which has recently been attracting great at-
tention since it provides computationally cheap means for
estimating such systems in state space form.

3. 4SID ESTIMATION

Of enormous recent interest in the area of system identi�-
cation methods designed for control theory applications has
been the study of so-called State Space Subspace Identi�ca-
tion (4SID) [4]. Despite this recent interest, the ideas in-
volved actually go back many years, at least to Akaike [1]
whose approach was targeted at stochastic estimation prob-
lems pertinent to this paper.

For the purposes of explaining this, suppose one is pre-
sented with observations fytg of a stationary stochastic pro-
cess and is faced the task of estimating a state-space repre-
sentation of this process in innovations form:

xt+1 = Axt +Ket; (6)

yt = Cxt + et (7)

where fetg is a stationary white noise process. Via the idea
of `predictor space', Akaike [1] made clear for the �rst time
that such a representation always exists, and in so doing sug-
gested a way that it may be estimated from observations of
fytg. This estimation method is now known with some sim-
ple modi�cations (involving user chosen weighting matrices)
as 4SID estimation.

To explain these ideas, assume the availability of an out-
put record fy1; � � � ; yNg and form the matrices

[Yp]k;j = yt�k+j ; ; k = 1; � � � ; t; j = 1; � � � ; N � 2t+ 1 (8)

[Yf ]k;j = yt+k+j; ; k = 1; � � � ; t; j = 0; � � � ; N � 2t (9)

and then try to predict Yf from Yp as (the subscripts p and
f are meant to indicate `past' and `future' data)

Yf = HYp:

The idea here is that the rows of H represent weights such
that the columns of Yf are the mean square optimal 1; � � � ; 2t
step ahead predictors of y based on the past in the columns
of Yp. Take one column as an example:0B@ yt+1

...
y2t

1CA
| {z }

yf

= H

0B@ yt
...
y1

1CA
| {z }

yp

+

0B@ et
...
e1

1CA
| {z }

v

:

The issue now is to �nd the `predictor space' de�ned by
Akaike in [1] to be the space spanning the projection (de-
�ned by the inner product of expectation over the underlying



probability space that the random variables are de�ned on)
of yf on yp. In order to work this out, it is easiest to change
to a new orthogonal basis: �yf = Lyf ; �yp = Jyp where the
elements in �yf are uncorrelated with each other and are of
unit norm (likewise for �yp): Ef�yf �y

T
f g = I; Ef�yp�y

T
p g = I.

Finally, in order to work out the projection of �yf on �yp it
will be advantageous if we can choose L and J such that

E

n
�yf �y

T
p

o
= diagf�1; �2; � � � ; �n; 0; � � � ; 0g

so that the predictor space will easily be seen to be spanned
by the �rst n elements in �yp.

Finding an L and J to satisfy these requirements can be
done by de�ning

Rpp = E

n
ypy

T
p

o
; Rff = E

n
yfy

T
f

o
; Rfp = E

n
yfy

T
p

o
and then calculating the SVD:

R
�1=2
ff RfpR

�1=2
pp = (U1; U2)

�
S1 0
0 0

��
V T
1

V T
2

�
= U1S1V

T
1 (10)

so as to be able to choose J = V TR
�1=2
pp ; L = UTR

�1=2
ff in

which case

E

n
�yf �y

T
p

o
= S =

�
S1 0
0 0

�
:

Now, in practice the covariances Rpp; Rpf ; Rff are not avail-
able, but they can be estimated as

Rpp �
1

N
YpY

T
p ; Rff �

1

N
YfY

T
f ; Rfp �

1

N
YfY

T
p : (11)

As well, in practice �yp's random variable behavior over the
whole probability space it is de�ned on is unknown. How-
ever, it is possible to de�ne its realisations from the observed
sample data as

�Yp = JYp =

�
V T
1

V T
2

�
R
�1=2
pp Yp

so that realisations of the predictor space (state space) are
the columns of bX = V

T
1 R

�1=2
pp Yp: (12)

That is, bX is a fat matrix with estimates of the state realisa-

tions stacked up as columns: bX = (bxt; ; � � � ; bxN�t). This can
be used to estimate the C matrix by solving

Yt , (yt+1; yt+2; � � � ; yN�t+1) = C bX
in a least squares sense to givebC = (Yt bXT )( bX bXT )�1: (13)

This then leads to an estimate of the innovations as be = Yt�bC bX which can be substituted into the state update equation
to give

(bxt+1; � � � ; bxN�t)| {z }
	

= A (bxt; � � � ; bxN�t�1)| {z }
�

+Kbe
= (A;K)

�
�be
�

| {z }
�

(14)

and then A and K can be estimated in a Least Squares sense
as

( bA; bK) = 	�T (��T )�1: (15)

4. NON-ITERATIVE ESTIMATION OF HMM'S

The contribution of this paper is to suggest that based on
the development of x 2 illustrating a state-space description
(4), (5) for a HMM which was illustrated in x 2 to be asymp-
totically second order stationary, and based on the overview
in x 3 of new 4SID methods for estimating state space model
structures from wide-sense stationary observations, then the
two ideas can be combined to devise a new fast and non-
iterative method for estimating HMM's.

Speci�cally, the new method is as follows. First, use the
observations fy1; � � � ; yNg of the HMM to form the past and
future Toeplitz and Hankel matrices Yp and Yf as in (8), (9).
Then

1. Form estimates Rpp, Rff and Rfp as in (11).

2. Form the singular value decomposition (10) to provide
an estimate of the predictor space as in (12).

3. Use this to estimate B from bC given by (13) as

bB =

� bC
eT � bC

�
where e is a column vector of all ones.

4. Estimate P as bAT given by (15).

As will presently be shown by simulation, the results of this
scheme are encouraging. However, before presenting them, it
is essential to comment on the main drawback of the above
method, which is that it is designed (by the orthogonality
principles imbued by the SVD calculations) to estimate an
innovations form (6), (7) realisation of the HMM process
which in general will be di�erent to the positive realisation.
By the latter is meant the representation which is of more
interest in applications in which all the elements of A and C
are positive, A is a column stochastic matrix and the elements
of C are less than one.

Therefore attention must be focussed on �nding the state

space transformation matrix T such that T�1 bPT; T bB are of
the required positive form. This problem is the so-called
`positive realisation problem', on which there has been much
recent progress (see [2] and the references therein). The cur-
rent state of the problem is that although it is known how to
construct a positive realisation (if it exists), in general this
realisation will be far from minimal, which is insu�cient for
the purposes here of �nding a realisation of given order.

However, this problem is not insurmountable, at least for
special cases of �xed dimension. For example, consider the
simplest n = 2 dimensional case as an example, and denote

by Q the matrix Q = T�1 bPT that is the row stochastic

matrix similar to bP that is being sought. It must be of the
form

Q =

�
1� p p
q 1 � q

�
for some probabilities p; q 2 [0; 1], and hence the eigenvalues
of Q must be 1 and 1� (p+ q). Generically, when using the
new algorithm derived here on a 2�2 example, one eigenvalue



of bP will be very close to 1 and the other, call it � will be
well way from 1. Since similarity transformations preserve
eigenvalues, then � = 1 � (p + q), so that in fact Q can be
written as

Q =

�
� 1� �
0 1

�
| {z }

�

+q

�
1 �1
1 �1

�
| {z }

�

: (16)

Now, since bP does not necessarily have an eigenvalue exactly
at 1, �nding a row stochastic Q that is exactly similar tobP is impossible, so instead the search for one approximately
similar is made as bPT � TQ � 0 (17)

where the precise meaning of � will be clari�ed in a moment.
In this case, using the Kronecker tensor product of matrices

and the vec(�) operator which turns a matrix into a vector by
stacking its columns on top of one another, then the param-
eterisation (16) allows the condition (17) to be re-formulated
as 264(I 
 bP )� (�T 
 I)| {z }

A

�q (�T 
 I)| {z }
B

375 vecT| {z }
�

� 0:

It is now elected to formally de�ne the � 0 notion as one
in which the Euclidean norm �T [A� qB]T [A� qB]� is min-
imised. However, this involves a joint minimisation over �
and q which is very di�cult, so an alternative strategy is
taken in which the Cauchy{Schwarz inequality is used to ob-
tain an overbound �T �kA� qBkF (with k � kF being matrix
Frobenius norm) for the above expression, and then focus
attention on choosing q such that kA� qBkF is minimised.

With the notation a = vecA, b = vecB then kA �
qBk2F = 1

2
(a� qb)T (a� qb), the minimisation of which with

respect to q and subject to the constraint that q 2 [0; 1]
may be solved in closed form using Lagrange multiplier tech-
niques. With this value of q in hand, it is then possible to
perform the SVD

A� qB = USV T = (U1; U2)

�
S1 0
0 0

��
V T
1

V T
2

�
so that an appropriate T is one in which vecT 2 SpanV2.

5. SIMULATION STUDY

To illustrate the e�cacy of the new method proposed here,
the simulation example begun in x 1 is revisited, with the
Baum-Welch algorithm illustrated there used thirty times on
thirty di�erent data sets, and the new non-iterative 4SID al-
gorithm proposed here also applied to the same data sets.
For the new algorithm, the method just outlined in x 4 was
used to �nd the positive form of the estimate. For each data

set, the estimated P matrix, call it bP was compared to the

true P , call it PT by calculating k bP � PT kF . The results for
the Baum-Welch algorithm (dash-dot line) and the new sub-
space method (solid line) for each of the thirty data sets are
shown as the top plot in �gure 2. Although the Maximum
likelihood estimate is on average more accurate, the di�er-
ence is not great. Moreover the computational cost paid for
achieving this higher accuracy shown in the bottom plot of
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Figure 2: Top plot is comparison of norm of estimation error
for the new subspace method of this paper (solid line) and
the ML estimate (dash-dot line) for thirty di�erent HMM
realisations. Bottom plot is a pro�le of the 
oating point
computational load.

�gure 2 is seen to quite high - more than ten times the 
oating
point calculations being required to calculate the Maximum
Likelihood estimate.

6. CONCLUSION

This paper has presented a new method for the estimation of
HMM's which has the advantage of being non-iterative and
computationally cheap. Preliminary simulation study indi-
cates it's performance to be similar to the Maximum Likeli-
hood method. However, it su�ers a serious drawback in that
it provides estimates in innovations form, not positive form.
For the simplest case of dimension 2, the paper illustrated
a method for overcoming this problem. The admittedly ad-
hoc nature of obtaining this positive form is not considered
a serious drawback, since the central theme of this paper is
to establish the potential of of an e�cient new estimation
method, not to provide a complete and general solution.

In any event, given the current vigorous e�ort [2] directed
toward providing a general solution to the `positive realisa-
tion problem', it may soon be possible to `complete the pic-
ture' by avoiding the ad-hocness of the �nal positive formu-
lation suggested here.
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