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ABSTRACT

In this paper we present a method for the detection of
microcalcifications in digital mammographic images. Our
approach is based on the wavelet transform, but differently
from other techniques proposed in the literature, the
detection is directly accomplished into the wavelet domain
and no inverse transform is required. After a preliminary de-
noising pass, microcalcifications are separated from
background tissue. This is performed by exploiting
information gained through evaluation of Renyi's entropy at
the different decomposition levels of the wavelet space.
Experimental results achieved on the standard Nijmegen
data set are shown and discussed.

1. INTRODUCTION

Microcalcification analysis is an appealing tool for early
breast cancer detection, but mammograms are among the
most difficult of radiological images to interpret. A
mammographic image I can be modeled at each point (x,y)
as

I(x,y) = Iµ (x,y)+Iβ (x,y)+ n(x,y) (1)
where Iµ represents the brightness contribute due to
microcalcifications, Iβ the background breast tissue, and n
the noise. Note that each microcalcification is very small
(about 0.7 mm in size, 0.3 mm of average diameter) and the
breast tissue inhomogeneous. Consequently, the clusters of
microcalcifications result embedded in such varying
background, while exhibiting low contrast and poor signal-
to-noise characteristics. Furthermore, the distribution of
noise in mammograms is actually unknown.

In the literature, several methods have been proposed for
detection and segmentation aims. A complete review of the
early ones has been given in [1].

More recently, methods based either on the Wavelet
Transform (WT) [2,3] or on the hybrid techniques
combining the WT with textural information [4] and neural
networks [5], have also been proposed. The general
approach of employing the WT for feature enhancement and
detection is the following: compute the forward wavelet
transform (FWT) of the image; modify the wavelet
coefficients by a non-linear function; compute the inverse

wavelet transform (IWT); eventually, if required, perform
detection.

In our research we follow a different strategy. The
microcalcification detection is directly performed in the
transformed domain (briefly, wavelet space) and the IWT
computation is avoided. After the FWT has decomposed the
image at multiple scales (levels), a preliminary de-noising
step is performed, in order to reduce noise contribute. Then,
microcalcifications are separated from background tissue,
by exploiting information gained through evaluation of
Renyi's entropy at the different scales constituting the
wavelet space.

In Section 2, we discuss the exploitation of the WT for
object detection purposes and motivate the WT algorithm
used in this work. In Section 3 we present de-noising and
detection steps. In Section 4, we provide results obtained on
the set of 40 mammograms of the Nijmegen database.

2. WAVELET DECOMPOSITION

Be an image a finite energy function I∈L2(R2), defined on a
support 2R⊂Ω . The continuous WT of the image I  is the
functional
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wavelet satisfying regularity constraints [6,7]. ψ  represents

the conjugate complex of ψ.
We will deal with images canonically discretized on a
square lattice (in the following, I(i,j)  represents the value of
I at node (i,j)  of the lattice).
Discretization of eq. 2 can be performed either using critical
sampling, thus giving rise to orthogonal representations, or
adopting non-critical sampling. A widely used orthogonal
scheme for image processing applications is Mallat's
algorithm [8]. However, the same algorithm might not be
convenient for pattern recognition purposes: on the one
hand, it is not shift-invariant, on the other hand image sub-
bands result uncorrelated at the different scales. On the
contrary, in the case of non-critical sampling, the
discretization computes the WT on denser grids than their
orthogonal counterparts; so, non critical sampling is known
to produce a redundant representation. In signal analysis,



unlike compression applications, a redundant expansion of
the signal is often desired. Therefore, several redundant
decompositions have been proposed in the literature. One
such scheme, the a trous (with holes) algorithm [6], is well
known for its computational efficiency with respect to
image analysis applications. The WT performed by this
algorithm produces at each decomposition level l  a so called
wavelet plane Wl={wl(i,j)} whose dimensions are equal to
those of the original image I0. The coefficients of the plane
are computed as wl(i,j)=I l-1(i,j)-I l(i,j) . I l(i,j)  is obtained by
applying a low-pass filter f to I l-1(i,j) . However, it is worth
noticing that by using the single wavelet plane Wl, no kind
of directional information, like that provided by sub-bands
in Mallat's decomposition, is available.

In a more recent work [9], Shensa has shown that the a
trous algorithm bears an intimate relationship to Mallat's
decomposition. Both can be considered as instances of a
single filter bank structure, the discrete wavelet transform
(DWT). The latter instance is simply the decimated output
of the former. The decimated DWT is characterized by
octaves obtained alternating the low-pass filter f with
decimation and tapped by a band-pass filter g to produce the
output (Mallat's algorithm). The undecimated DWT inserts i
zeros between the elements of the filters in place of
decimation (a trous algorithm). We exploit such property in
two dimensions, thus obtaining an a trous algorithm which
preserves sub-band information, as in Mallat's scheme. Our
solution is represented in Fig. 1. In the latter, Dif and Dig
represents f and g with 2i-1 zeros between each pair of filter
coefficients and wSBk

l(i,j)  are the detail  wavelet coefficients
in the sub-bands SBk, k=1,2,3, at level l .

3. DETECTION

The model specified in eq. 1 can be represented in wavelet
space by applying eq. 2 and exploiting linearity property:

WI(x,y) =W Iµ (x,y)+ WIβ (x,y) + Wn(x,y) (3).
The same remark holds for the discrete case. Clearly, the
optimal detection strategy is to reinforce the WI contribute
due to the microcalcifications, while reducing the one due to
both background and noise.

As a first step, let us consider noise reduction. In general,
the WT compresses the energy of the image into a small
number of big coefficients, while noise preserves the same
structure and spreads over all coefficients []. Thus, Wn(x,y)
can be partially removed from the data without affecting the
W Iµ and WIβ  components
The de-noising technique we use to select significant
wavelet coefficients, is similar to Donoho and Johnstone’s
[10] shrinkage. The latter consists in the cancellation of
those coefficients which are close to the noise levels. At a
given scale, it is sufficient to compare the coefficients to the
noise level in the sub-band SBk, namely σSBk, choosing the
significative ones as follows. For each detail sub-band SBk,
we empirically estimate the noise information as:
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To calculate the threshold λ, we use the estimate:
2/1−= Nl

kSB ρσλ  (6),

where ρ is a constant introduced for normalization aims, N
is the number of wavelet coefficients, σl

SBk is computed
through eq. 4.

After the denoising step, detection is performed.
Let )),,((),( λjiwtjid kSB

lll

kSB =  be the shrinked detail

coefficients. For each scale l , we use a linear combination of
the weighted absolute values of such coefficients:
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It is worth noticing that the α weights are image dependent
weights. For the purposes of the present work, these are
determined so as to enhance information provided by sub-
band 3 ("diagonal" details), with respect to the other sub-
bands. Notice that the coefficient set {dl(i,j)}  is a kind of a
trous wavelet plane, but where spatial direction information
has been taken into account.
Then, the dl(i,j) are used to extract microcalcifications from
tissue background. We assume that such operation be a kind
of object/background segmentation performed in wavelet
space.

It is well known that for grey-level images
object/background separation can be achieved by a
thresholding process [11]. Notice that, in ideal bilevel
thresholding, it is assumed that the probability distribution
function (p.d.f.) of the grey levels is bimodal: the optimal
threshold is chosen so as to coincide with the minimum of
the p.d.f. The multilevel case is usually handled as an
extension of the bilevel case. Obviously, these methods do
not produce effective threshold values if the assumption of
bimodality or multimodality is not met.

 In our work we extend to the wavelet space, such
techniques usually applied within the image domain. To this
end, it is necessary to transform the coefficients dl(i,j)  into
distributions, and this can be done as follows. First,
coefficient quantization is performed. Second, we consider

the quantized coefficients ),(
~
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assuming value x at level l , N is the total number of
coefficients. We experimentally found that the p.d.f. of the
coefficients may be interpolated by a generalized gaussian,

namely
lrxlb

l
x

l eap
−

= , where al ,bl and r l characterize the
gaussian parameters at level l . In order to match the real
p.d.f., the parameter r l has been computed according to the

2χ test (r l=0.7). Notice that this result extends that of



Daubechies et al,.[7] referring to the p.d.f. of a single
wavelet subband.

In consequence of the above result, the bimodal
assumption must be abandoned in our specific case.
Recently, some authors have shown how thresholding
selection on a unimodal distribution may be efficiently
performed by taking into account Renyi's entropy [12]. The
a priori Renyi’s entropy of order ν, with respect to the
probability distribution Γ, can be defined as
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where ν (ν ≠ 1) is a positive real parameter. We use Renyi's
entropy as follows. From distribution x

lp , estimated
according to eq. 8, two probability distributions for the
object class (microcalcifications) and for the background
class (breast tissue), Γl

1 and Γl
2 respectively, are derived:
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The optimal threshold is that which maximizes
Hl

Γ1(t)+H l
Γ2(t), and it is a function of ν. Sahoo et al. []

found by numerical simulation that
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where   ,, 321 ωωω are weights determined by using local

information [12].
Finally, the outcomes of the detection process, gathered

at each level, are combined in a binary map M(i,j),  namely
the multiresolution support. This is done according to the
following rule:

     ),(),( �
l

l jiMjiM = with l
opt

l tjijiM >= ),(d if  1),( l (12),

where tl
opt is calculated as in eq. 11.

Each connected set of non-zero locations of M(i,j)  is a
microcalcification detected in the mammographic image.

4. EXPERIMENTAL RESULTS

The method has been tested on the Web available Nijmegen
database [13]. This test set is formed by 40 mammograms,
including both benign and malignant cases. Each
mammogram is accompanied by a "truth" image produced
by two expert radiologists.

In a preliminary stage, the detection of the single
microcalcifications was considered. The aim was to tune
method's parameters for maximizing the true calcification
detection (true positive, TP) while minimizing the false
detections (false positive, FP). Clearly, the choice of the
decomposition levels to use is a trade-off between the size

of the object to detect and the presence of noise. Our
experiments have shown that a reasonable number of
decomposition levels is l=4. The results of these preliminary
experiments can be summarized as follows: a maximum
average of about 10 FP are detected per image; the method
detects the presence of microcalcifications in the same
regions as in the accompanying truth images. Fig. 2 shows a
typical example of achieved results.

A second set of experiments aimed at comparing our
method performance with respect to others in the literature,
in particular to the most recent one of Strickland [2]. To this
end, microcalcification cluster detection is considered,
counting true positive clusters (TPC) and false positive
clusters (FPC). We adopt the standard cluster definition
proposed by Karssemeijer [14]. A cluster is observed if
more then two microcalcifications are localized inside a
circular region of radius 0.5 cm, marked around each
detected microcalcification. The cluster is then classified as
a TPC if marked in the accompanying truth image, FPC
otherwise.
By varying the wavelet basis, a typical receiver operating
characteristic (ROC) curve is plotted (Fig 3). Evidence is
given to the higher effectiveness of Daubechies'
biorthogonal B-spline basis [7], with respect to TPC/FPC
ratio. According to our method, we have as best result about
0.7 FPC and 66 % of TPC. On the same database, Strickland
achieves 55% of TPC at the FPC rate of 0.7.
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Figure 1. The proposed decomposition scheme at level l.

a) b)

c)

c)

Figure 2. An example of detection. a) Original image. b)
Truth image. c) Detected microcalcifications

Figure 3. Cluster detection performance measured on 40
images of the Nijmegen database. The following  bases
have been used[7]: Burt-Adelson (W1), Battle-Le Marie
(W2), B-spline I (W3), B-spline II (W4), Daubechies 4
(W5), Daubechies 6 (W6), Daubechies 8 (W7), Daubechies
10 (W8)
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