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ABSTRACT

In this paper, we propose a frame selection procedure for text-
independent speaker identification. Instead of averaging the
frame likelihoods along the whole test utterance, some of these
are rejected (pruning) and the final score is computed with a
limited number of frames. This pruning stage requires a prior
frame level likelihood normalization in order to make
comparison between frames meaningful. This normalization
procedure alone leads to a significative performance
enhancement. As far as pruning is concerned, the optimal
number of frames pruned is learned on a tuning data set for
normal and telephone speech. Validation of the pruning
procedure on 567 speakers leads to a 27% identification rate
improvement on TIMIT, and to 17% on NTIMIT.

1. INTRODUCTION

Most of speaker identification systems use an averaging of the
frame scores to compute a global score and to take a decision
with regard to the whole test utterance. This stage, which can be
called accumulation is an arithmetic mean in the majority of
cases. However, there are several ways to cope with the
accumulation problem: normalizing the frame scores [8],
replacing the score for a frame with a measure of confidence
that the frame was spoken by the target speaker [6]. In this
work, we investigate accumulation using a hard threshold
approach since some frame scores are knocked out from
consideration (pruning) and the final decision is taken with a
subset of these scores.

Our motivation in the use of this system is to automatically
extract from the input speech signal the part that at best
contributes to identify a speaker. We have already investigated
the selection of the most speaker specific frequency segments
(subbands) for speaker identification [2]. This work is the
counterpart of the previous one in the time domain.

This method should be robust in the case of noise occurring in a
given time period since the least reliable frames can be
removed. Even in the case of clean speech, some frames of a
speaker test utterance can be simply more similar to another
speaker model than to the right speaker model itself. Removing
these error-prone frames should lead to a more robust decision.

In Section 2, we propose a formalism to describe our segment-
based speaker recognition system in which a segment can be a
frame or a group of frames. In Section 3, we describe the
pruning stage which requires a previous normalization of the
scores. The normalized scores proposed are interpreted as
likelihood ratios. Experiments intended to find the optimal size
of segments and the optimal number of frames kept are
described in Section 4. The hyper parameters (size of segments
and number of frames) which lead to the best performances are
validated on TIMIT and NTIMIT databases (Section 5). Finally,
we summarize our main results and outline the potential
advantages of the pruning procedure in Section 6.

2. FORMALISM

The gaussian modeling is more precisely described in [3] and
[6]. Let { }xt t M1≤ ≤

be a sequence of M vectors resulting from
the p-dimensional acoustic analysis of a speech signal uttered by
speaker ; . These vectors are summarized by the mean vector
x  and the covariance matrix X:
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Similarly, for a speech signal uttered by speaker < , a sequence
of N vectors { }yt t N1≤ ≤

 can be extracted.

Supposing that all acoustic vectors extracted from the speech
signal uttered by speaker ;  are distributed like a Gaussian
function, the likelihood of a single vector yt  uttered by speaker
<  is:
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If we assume that all vectors yt  are independent observations,
the average log-likelihood of  { }yk t k t T+ ≤ ≤ +1

 on a segment of T
frames can be written:
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The log-likelihoods of all segments are then accumulated over
the whole test utterance of N frames, to form a final score for
each speaker model :
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where ACC is the accumulation function, T is the number of
frames in a segment and n is the number of segments; the total
number of frames is then N=nT. Note that ~

( )G y N
; 1

 is
equivalent to the standard gaussian model scoring when ACC is
an arithmetic mean.

The use of different time intervals enables us to discard or de-
emphasize segments corresponding to abnormal events or
segments poorly representative of the target speaker. The
accumulation function proposed to take advantage of this
segmentation is described in the next section.

3. FRAME PRUNING

A pruning procedure has been proposed in [9] where the
‘neutral’ frames (from which no particular speaker model
emerges) are eliminated with a divergence measure. As far as
our system is concerned, the underlying hypothesis is not the
same. Pruning procedure is based on the assumption that the
maximum likelihood scores resulting in correct identification
are in general higher than the maximum likelihood scores
resulting in incorrect identifications. In other words, when a
segment is error-prone (i.e. when the true speaker is not
identified on this segment), it is not due to a non-target speaker
model matching well the speech segment, but rather to the true
speaker model performing badly. We will see in section 4.3 that
this assumption is warranted for the segment scores used in our
experiments. Then, it is rather unlikely for non-target speaker
models to achieve high log-likelihood scores.

3.1 Normalization

The likelihood scores of a segment must be normalized before
pruning in order to make comparisons between segment scores
meaningful. Actually, if the log-likelihood G yt
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 obtained with a speech segment [k+1,k+T]� it does

not necessarily mean that segment [t;t+T] is less specific (of
target speaker ;� than segment [k;k+T]. Both segments convey

different data and there is no basis for a meaningful comparison
of their log-likelihoods.

Consequently, we propose to use a likelihood ratio as a
normalized score. The denominator of the likelihood ratio is
usually calculated using a collection of background speaker
models. Different background speaker sets have been proposed
in [8]: all other speakers, top M speakers, cohort speakers. Since
our goal is not to study in detail the different normalization
techniques, we will use the following normalized score [6]
(equivalent to the top 1 background speaker set of [8]):
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The numerator is the likelihood over the model belonging to
speaker ;, and the denominator is the maximum over all models
not belonging to speaker ;.

For convenience, we deal with the minus-log likelihood ratio
rather than with the likelihood ratio itself. In that case, the
normalized score becomes:
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h is also called discriminant function [5] (p.52) since if h<0,
speaker ; scores higher than everyone else in the given segment
and so speaker ; is recognized on this segment; if h>0, the
speaker recognized on the segment is not speaker ;�

In our experiments, the normalizing speaker, for a given person,
is chosen among the other speakers of the reference database,
rather than among a completely separate group. Speakers are
thus normalized by each other.

3.2 Pruning

Pruning can be achieved with the normalized scores; the
modified minus-log-likelihood ratio of the whole test utterance
of N frames is then:
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In this case, we use the p lowest segment scores for each
speaker, with p<n (n number of segments in the test utterance).
We select the lowest scores because these are comparable to
distances (minus log-likelihood); if the scores were log-
likelihoods, we would keep the highest ones. We also note that
the segments selected in the sum can vary from one speaker to
the others.



4. EXPERIMENTS

4.1 Database and signal analysis

For our experiments, we have used TIMIT and NTIMIT
databases. TIMIT [4] contains 630 speakers (438 male and 192
female), each of them having uttered 10 sentences. The NTIMIT
database [7] was obtained by playing TIMIT speech signal
through an artificial mouth installed in front of the microphone
of a fixed handset frame and transmitting this input signal
through a different telephone line for each sentence (local or
long distance network).

The speech analysis module extracts filterbank coefficients in
the following way: a Winograd Fourier Transform is computed
on Hamming windowed signal frames of 31.5 ms (i.e. 504
samples) at a frame rate of 10 ms (160 samples). For each
frame, spectral vectors of 24 Mel-Scale Triangular-Filter Bank
coefficients (24 channels) are then calculated from the Fourier
Transform power spectrum, and expressed in logarithmic scale.
Covariance matrices and mean vectors are finally computed
from these spectral vectors. These analysis conditions are
identical to those used in [1] [2] and [3].

For TIMIT database, all 24 coefficients of the spectral vectors
are kept. For NTIMIT, we remove the first 2 coefficients and the
last 7 coefficients which are outside the telephone band
(approximately 300-3400 Hz).

4.2 Training and test protocols

A common training/test protocol is used for all the experiments.
In this protocol, training or test durations are rigorously the
same for each speaker. Short durations are used (6s training and
3s test) in order to show the efficiency of the pruning procedure
even when little speech material is available.

For the training of a given speaker, all 5 'sx' sentences are
concatenated together and the first M samples corresponding to
the training duration required (6s here) are selected.
Consequently, a single reference pattern is computed from
exactly the same number of samples for each speaker.

For the test of a given speaker, all 'sa' and 'si' sentences (5 in
total) are randomly concatenated together and blocks of N
samples corresponding to the test duration required (3s here) are
extracted until there is not enough speech data available.
Consequently, the test patterns are computed from exactly the
same number of samples for each speaker.

All the tests are made within the framework of text-independent
closed-set speaker identification using a 1-nearest neighbour
decision rule.
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Figure 1. Density functions of h yt;
( )  on the interval [-10,0]

4.3 Potential

The potential of the pruning procedure is illustrated by Fig. 1
where the distributions of the normalized frame scores h yt;

( )
are represented for speakers which score higher than everyone
else in a given frame (i.e. negative values of h yt;

( ) ). We
distinguish 2 types of frames: frames on which the target
speaker is recognized (successful frames) and frames on which a
non-target speaker is recognized (not successful frames). The
distributions of both classes are equivalent to the density
functions of h yt;

( )  and can be noted respectively p hh ( / );
and p hh ( / ); .

We see that the frames may have lower minus log-likelihood
ratios h for the true speaker (p hh ( / ); ) than for non-target
speakers (p hh( / ); ) which tends to prove the need of a pruning
process to select the lowest values of h and thus eliminate error-
prone frame scores.

4.4 Influence of the segment size T

We have investigated the influence of the number of frames T in
a segment when no pruning process is performed (p = n total
number of segments in a test utterance). Therefore, only the
effect of normalization is studied. The speaker identification
results obtained on a 63-speaker subset of TIMIT and NTIMIT
(20 women, 43 men) are presented in Tab. 1.

T 300 150 100 50 30 20 10 5 1
p 1 2 3 6 10 15 30 60 300

TIMIT (%id.) 97.55 98.95 98.95 99.30 99.30 99.30 98.60 98.25 98.25
NTIMIT (%id.) 40.55 39.36 38.11 42.30 43.35 42.30 42.65 41.25 40.90

Table 1. Influence of the segment size ‘T‘ (6s training/3s
test - no pruning - 63 speakers - 286 tests)

We observe an optimum of the results for T=30 frames, i.e.
when a normalization is made for each segment of 0.3s. In this
case, the normalization alone leads to a significative
improvement of the results on TIMIT compared to the standard
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Figure 2. Influence of the number of frames kept ‘p’ (6s
training/3s test - (300-p) frames pruned - T=1 - 63 speakers
- 286 tests)

gaussian measure without normalization (T=300). A
performance enhancement is observed on NTIMIT but it is not
significative. These results confirm the usefulness of the
normalization procedure for closed set speaker identification,
already observed in [8].

4.5 Influence of the number of frames kept p

We have investigated the influence of the number of segments
selected p when a segment is composed of a single frame (T=1).
The results obtained with the same experimental conditions
used in section 4.4 are reported in Fig. 2.

For both databases, optimum results are obtained when some
frames are pruned. It shows that the selection of the information
is important since some frames in a test utterance can
contaminate the final score. Moreover, it is interesting to notice
that a reasonably  good performance is obtained on TIMIT when
a single frame per speaker is kept (71.63% id.) that is to say
when an extremely small amount of speech is used for each
speaker to take the final decision !

5. VALIDATION

The optimal values of p and T obtained for 63 speakers on
TIMIT and NTIMIT have been used to validate the benefit of
the pruning procedure for speaker recognition. Speaker
identification tests have been conducted on the 567 remaining
speakers of TIMIT and NTIMIT. So the final test set is
completely distinct from the tuning set from which the optimal
values of p and T are evaluated. The identification results
obtained are presented in Tab. 2. For both databases, the
improvement of performances is significative which shows the
interest of frame pruning for speaker recognition.

BASELINE NORMALIZATION FRAME PRUNING IMPROVEMENT
no norm. optimal T norm. after each frame due to pruning

no-pruning no-pruning optimal p / baseline

TIMIT p=1;T=300 p=10;T=30 p=150;T=1 27%
Id. % 91.66 93.82 94.20 enhancement

NTIMIT p=1;T=300 p=10;T=30 p=260;T=1 17%
Id. % 15.91 16.86 18.64 enhancement

Table 2. Validation of the pruning procedure on TIMIT and
NTIMIT (6s training/3s test - 567 speakers - 2639 tests)

6. CONCLUSION

We have presented a frame pruning procedure for speaker
recognition. It is shown, by results obtained, that this technique
can significantly increase the performances of a speaker
identification system. We intend to apply this method to refine
the training of the speaker models. Another interesting issue
would be to know systematically the phonetic label of rejected
frames to say which specific part of a speech signal best
identifies a speaker.
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