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ABSTRACT

A method for the stabilization of stationary and time-
varying autoregressive models is presented. The met-
hod is based on the hyperstability constrained LS-
problem with nonlinear constraints. The problems are
solved iteratively with Gauss-Newton type algorithm
that sequentially linearizes the constraints. The pro-
posed method is applied to simulated data in the sta-
tionary case and to real EEG data in the time-varying
case.

1. INTRODUCTION

Stability is often an important issue in such applica-
tions as spectral estimation, simulation of time series
and decoding of linear prediction coded (LPC) samples.
In LPC an AR(p) model is formed for a sample that
is then represented by the model parameters and the
(possibly quantized) prediction errors. When phase in-
formation is not needed, the original signal is simulated
simply by feeding white noise to the corresponding �l-
ter. If the process is of narrow band type, that is, at
least one of the roots has near unit modulus, the roots
that correspond to the estimated parameters may be
even nearer to the unit circle. In such cases the recon-
struction of the process can turn out to be an unsta-
ble problem even when the AR parameter estimation
scheme guarantees stability (e.g lattice methods and
the Yule-Walker method) [9].

In the analysis of EEG signals there are similar
di�culties, especially in the case of time-varying AR
models [6]. Also in these applications the narrow-
bandedness of the process can cause meaningless es-
timates. These di�culties are related to the lack of
Parseval's identity for AR models and to the rise times
of very narrow band processes [9].

A further class of problems is related to time-
varying AR modeling in which the time-varying param-
eters are linear combinations of some predetermined
basis functions. This scheme is called the time-varying

autoregressive least squares method (TVARLS) when
the 2-norm of the prediction error is minimized. In
this case the estimated models become very easily tem-
porarily unstable thus e�ectively preventing the end
use of the models [4, 7]. In TVARLS modeling the
possibility of temporarily unstable models is especially
great when the signal contains transitions between
narrow-band and wide-band epochs. Such transitions
occur e.g. in the modeling of EEG signals [6]. It can be
said that this unstability problem has been one of the
main hindrances in the applications of TVARLS mod-
els. Speci�cally, it has been suggested that \It may be

possible to develop a time-varying estimation method

or to determine sets of basis functions for time-varying

LPC that will necessarily lead to stable �lters." [4].
This problem is also stated in [1, 7]. Since it can easily
be shown that no set of basis functions guarantees the
global stability of a TVARLS model, other approaches
have to be pursued.

In this paper we give a method for the estimation
of hyperstable AR models. A stationary AR(p) model
is stable, if the roots �k; k = 1; : : : ; p of the associated
characteristic polynomial have modulus less than unity.
Correspondingly, a time-varying AR(p) model is stable,
if the above holds for the roots �k(t); k = 1; : : : ; p at
each time t. We discuss here only the nonwindowed
LS method. The rest of the paper is organized as fol-
lows. In Section 2 we formulate the hyperstability con-
strained AR parameter estimation problem and present
an algorithm for its solution in the stationary case. In
Section 3 we extented the stability constraints to the
time-varying case. In Section 4 we study examples that
illustrate the performance of the algorithm.

2. HYPERSTABILITY CONSTRAINED AR

ESTIMATION, STATIONARY CASE

The hyperstability constrained least squares AR pa-
rameter estimation problem is of the form



min
a

kHa�Xk2 ; j�k(a)j � � ; 8 k = 1; � � � ; p ; (1)

where � < 1, �k(a) are the roots of the characteristic
polynomial, a = (a1; � � � ; ap) are p

th order predictor co-
e�cients, X = (xp+1; � � � ; xT )

T and H = (H1; � � � ; Hp),
Hj = (xp+1�j ; � � � ; xT�j) and (�)T refers to matrix
transposition. The constraints are nonlinear inequal-
ity constraints for which there is no explicit form. This
constitutes the main di�culty of the problem. We solve
the problem iteratively using a Gauss-Newton type al-
gorithm that sequentially linearizes the constraints.

It can be shown by using the perturbation theoretic
approach of the characteristic polynomial's companion
matrix that problem (1) can be tranformed to least
squares problem with inequality constraints [5]

min
�a

kH�a� (X�Ha)k2 ; F (a0)+JF (a0)�a � 0 (2)

where �a is the change in a corresponding to the pertur-
bation of the companion matrix, F (a0) is the constrait
function
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�
j�1(a)j

2
� �2; � � � ; j�p(a)j

2
� �2

�
(3)

and JF (a0) is the Jacobian of F . It can be also shown
[5] that the elements of the Jacobian are obtained as
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k;j + �ik�
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k;j

�
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th components of the vec-
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k g, respectively, where (�)

H denotes the complex
conjugate transpose, < the real part and = the imagi-
nary part respectively, wH

k is the left eigenvector of the
companion matrix, vk is the corresponding right eigen-
vector and wH

k;1 is the �rst element of w
H
k . The problem

(2) is a least problem with inequality constraints which
can be solved with a method presented in [8].

The solution to the original problem (1) is sought
iteratively by

a(`) = a(`�1) + ��a(`) (5)

where ` denotes the iteration number, � is a step size
and in (2) we replace a with a(`), a0 with a

(`�1) and �a
with ��a(`). If a� is a local minimizer of the original
problem (1), then by the Kuhn-Tucker conditions a�
is also the solution of (2). Since the solutions to the
linearized problems are not necessarily in the feasible
region, each a(`) has to be projected onto the feasible
region before the problem is linearized. The projec-
tion can be done for example by calculating the roots
corresponding to a(`�1) and adjusting their moduli if
necessary.

The termination of the iteration can be done by ob-
serving the angle between the gradient of the objective
functional and the hyperplane that is normal to the ac-
tive (linearized) constraint set. The active set refers to
those constraints in (2) for which equality holds. The
details of the proposed method can be found in [5].

3. THE TIME-VARYING EXTENSION

In the basis constrained time-varying AR problem
(TVAR) the coe�cients are restricted as

ak(t) =

MX
`=0

ck`�`(t) ; (6)

where �`(t); ` = 0; : : : ;M are the basis functions. The
basis constrained LS problem can be stated as

min
C

kX �HCk2 ; (7)

the solution of which is

C = (HTH)�1HTX : (8)

where C = (c10; : : : ; c1M ; : : : ; cp0; : : : ; cpM )T and re-
gressor matrix H = (H10; : : : ; H1M ; : : : ; Hp0; : : : ; HpM )
where Hk` = (�`(p + 1)xk; : : : ; �`(T )xT�p+k)

T The
time-varying coe�cients are then assembled via (6).

The hyperstability constrained estimation scheme
is extended to the time-varying case as follows. In this
case we demand that the roots of the (frozen time)
characteristic polynomial have to lie inside the �-circle
in complex plane for every time instant. Thus the
hyperstability constrained TVARLS problem is of the
form

min
C

kHC �Xk2 ; j~�(t)j � � ; t = p+ 1; : : : ; T (9)

where ~�(t) = (�1(a(t)); : : : ; �p(a(t)))
T, k = 1; : : : ; p

and a(t) is a function C as in (6). Also in this case
the problem can be solved with algorithm presented in
2 by linearizing the constraints. For that we use the
same basis function set for time dependent change in
ak(t) i.e.

�ak(t) =
MX
`

�ck`�`(t) ; k = 1; : : : ; p (10)

or in matrix form

�a(t) = �(t)�C (11)

where �a(t) = (�a1(t); � � � ; �ap(t))
T, �C is the vec-

tor corresponding to an adjustment of C and �(t)



is a block diagonal matrix whose diagonal blocks are
(�1(t); � � � ; �M (t)). Now replacing �a with �a(t) in (2)
and using �C as the independent variable we obtain

min
�C

kH�C � (X �HC0)k2 ; ~F + ~J�C � 0 (12)

where C0 is the linearization center, ~F = (F (a0(p+ 1)) ;
� � � ; F (a0(T )))

T and ~J = (JF (a0(p+ 1))�(p+ 1); � � � ;
JF (a0(T )) �(T ))

T. We have thus obtained a TVARLS
problem with linear inequality constraints. The itera-
tion corresponding to (12) is somewhat more cumber-
some than in the stationary case since the set of active
constraints can vary considerably during the iteration.

4. EXPERIMENTAL RESULTS

4.1. The stationary case

We study the constrained parameter estimation prob-
lem of a 4th order AR process. The sample is of length
T = 256 and the matrix H corresponds to the prewin-
dowed forward prediction equations. The roots of the
characteristic polynomial of the process are

�1;2 = 0:92 exp (�0:20�i) ; �3;4 = 0:60 exp (�0:32�i)

We choose � = 0:9. The unconstrained least squares
estimate gives the prediction coe�cients

a = (�2:1225; 2:1546; �1:0797; 0:3103) :

and the corresponding roots

�1;2 = 0:9223 exp(�0:1996i)

�3;4 = 0:6039 exp(�0:3258i)

As the initial value of the iteration we use the poly-
nomial coe�cients that are obtained by moving the
roots that correspond to the unconstrained LS solution
radially inside the feasible region.

The step size � = 0:2 was chosen and the algorithm
iterates until the inner products of the gradient and the
active linearized constraints are between [��; �]. We
used the tolerance � = 10�4. Table 1 shows the angles
 between the active constraint planes and the negative
gradient. As can be seen, the angle approaches 90� i.e.
the inner product of the gradient and the normal to the
plane approaches zero as the function of the iteration
number. In this case and with the chosen step size we
obtain the accuracy of j�j � 0:01 within 10 iterations.

The projections of the negative gradient, the actual
constraint and the linearized constraint onto the plane
(a2; a4) after 30 iterations are shown in Fig. 1. The
unconstrained minimum and one error contour are also
shown in Fig. 1.

Table 1: The angle  (in degrees) between the active
constraint plane and the negative gradient, and the ter-
mination criterion j�j as functions of the iteration.

Iteration 1 10 30
 86.781 89.576 89.995
j�j 0:056 0:010 1 � 10�4
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Figure 1: Left: the projections of the negative gradient
(arrow), the actual constraint (weak line) and the lin-
earized constraint (heavy line) onto the plane (a2; a4)
after 30 iterations, the unconstrained minimum (small
circle) and one error contour. Right: a section of the
circle with radius � in the complex plane and the roots
that correspond to the solutions of the unconstrained
('�') and constrained ('+') problems.

The constrained minimum corresponds to the sit-
uation in which the negative gradient points directly
outward from the the feasible region, that is, the gra-
dient is normal to the tangent plane of the constraints.

The coe�cients and the roots corresponding to the
local minimum are

a = (�2:1294; 2:1624;�1:0854; 0:2998)

�1;2 = 0:900 exp(�0:201�i)

�3;4 = 0:608 exp(�0:313�i) :

The coe�cient estimates satisfy clearly the hypersta-
bility constraints. The roots that correspond to the
unconstrained and constrained problems are shown in
Fig. 1. We observe that the addition of the constraints
moves the unstable root to the edge of feasible region
and furthermore, the other root is also adjusted.

4.2. The time-varying case

In the time-varying case we applied the proposed
method to a time-varying EEG sample. We con-



structed a TVAR(6) model for the sample with gaus-
sian basis functions (M = 6) and applied this model
for frozen time spectrum estimation [3]. The uncon-
strained and corresponding stability constrained spec-
trum estimate is shown (with � = :2 and � = 0:95) in
Fig. 2. The unconstrained spectrum estimate is clearly
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Figure 2: Up) EEG sample, Middle ) The time vary-
ing amplitude spectrum estimate of the unstabilized
TVARLS scheme and Down ) The corresponding esti-
mate of the stabilized TVARLS scheme.

useless for further applications but the estimate ob-
tained with the hyperstability constrained estimation
scheme can be applicable for clinical purposes.

5. DISCUSSION

We have proposed an algorithm for the hyperstabiliza-
tion of autoregressive models. While there are several
methods that guarantee classical stability, it seems that
there have been only ad hoc methods for the hypersta-
bilization of the models, such as radial pole adjustment
in the stationary case, which can not be applied to the

time-varying case.
Although we have discussed only AR modeling

and speci�cally the (nonwindowed, forward prediction)
least squares estimation of the coe�cients, the method
is clearly applicable to other AR parameter estima-
tion methods, such as the Yule-Walker method. The
method is also relatively easily modi�ed for �lter design
problems when hyperstability is required. For adaptive
algorithms hyperstability can be implemented e.g. as
in [10, 2], but block algorithms seem not to have been
proposed earlier.

However, the most relevant �eld of application of
the proposed method is the estimation of TVARLS
models, or equivalently the time-varying linear predic-
tion coding (TV-LPC) modeling. In these cases the
hyperstability can often be a practical prerequisite for
the applicability of the TVARLS methods.
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