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ABSTRACT

The continuous use of adaptive algorithmsis strongly de-
pendent on their behavior in finite-precision environments.
We study the nonlinear round-off error accumul ation system
of the conventiona RLSa gorithmand we derive boundsfor
the relative precision of the computations and the accumu-
lated round-off error, which guarantee the numerical stabil-
ity of the finite-precision implementation of the algorithm.
The bounds depend on the conditioning of the problem and
theexponential forgettingfactor. Simulationsagreewith our
theoretical results.

1. INTRODUCTION

A very important “rea-life” problem, inherent in the con-
tinuoususe of adaptive algorithms, istheir behavior infinite
precision environments. This problem contains the follow-
ing subproblems: round-off error generation, round-off er-
ror propagation, and round-off error accumulation.

For the conventiona RL S algorithmsthe round-off error
propagation is the best studied of the three af orementioned
subproblems[1], [2]. Such studiestypically examinethelin-
earized round-off error propagation system and deriveitsex-
ponentially stability; thisin turn, implieslocal exponential
stability of the nonlinear round-off error accumulation sys-
tem. However, no study exists, to our knowledge, that pro-
videsan indication asto “how small” the accumulated error
should be so that the influence of the nonlinear terms does
not destroy the stability properties of the overall system.

An examination of the nonlinear round-off error accu-
mul ation system of the conventional RL S a gorithm appeared
in [3], where a scenario for explosive divergence was de-
veloped. Explosive divergence isthe occurence of “sudden
big” errorsin the estimated weight vector, due to finite pre-
cision effects. This phenomenon is linked to theloss of the
positive definiteness of the finite precision inverse covari-
ance matrix, and the negative value of atheoretically posi-
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tive variable. However, the approach is mostly qualitative
and numerical stability cannot be guaranteed. Thisis our
main subject. We study the stability propertiesof the nonlin-
ear round-off error accumulation system of the conventional
RL S agorithm and we derive

e An upper bound for therelative precision of the com-
putations, intermsof thecondition number of the prob-
lem and the forgetting factor, which guarantees that
the nonlinear round-off error accumulation system re-
mains BIBO stable.

¢ An upper bound for the accumul ated round-off error.

2. RECURSIVE LEAST-SQUARESALGORITHMS

For the standard least squares problem, one is given a se-
guence of M—dimensional input vectors, ¢, plusareference
sequence, ug,t = 1, ..., k, andisasked to computeaparam-
eter vector, 6y, such that

k
fr = arg minz Ak_t(ut - 9t¢>t)2, «y

t=1

where A istheforgetting factor. The CLS agorithmisgiven
by the following recursions:
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Denoting Py thefi nite-precision version of P, we may ex-
press the finite-precision time update of P, as
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where the term dSk denotes the local round-off error in the
computation of Py.



3. THE ROUND-OFF ERROR ACCUMULATION
SYSTEM

Let Az bethe accumulated round-off error in z. Then

AP, = P — Py, (6)
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< 1 we can expand the second term of (5) as
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wherewe haveused thefact that A P, _; issymmetric, which
is necessary for the convergence of the algorithm in finite
precision [4], and trivialy imposed in afinite precision im-
plementation. Thus
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The study of (9) is of primordial importance for the “real-
life” finite-precision implementation of the CLS agorithm.
However, it seems that the existence of thehigher-order terms
(inside the second set of parentheses) has been a major ob-
stacle towards thispurpose. In the sequel we study the non-
linear difference egquation (9) and we derive sufficient con-
ditionsfor its BIBO stability, which implies numerical sta-
bility of the CLS agorithm.

3.1. Assumptions
1. Theregressor vector ¢ ispersistently exciting, thatis,
Ja,bsuchthat0 < a < b < o0 and

k
al < N'g6l < b1, forall k> k. (10)

t=1

Thus, there exist constants R and P such that

[|Ri]| <R, and ||P]| <P, forallk, (11)
where || - || denotes the 1-norm. The validity of the
bounds in (11) for ¥ < ko can be guaranteed by a

“soft” start. If we assume that

||6:]| < ®, for allt, (12)
then R can be expressed as
(I)2
= — 1
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and an upper bound for the condition number of the
estimated data covariance matrix is

def PP?
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2. The round-off error ¢ P;, is bounded as
eﬁkH <&e, forallk, (15)

where ¢ denotestherel ative precision of the computa
tionsand £ isabounded constant. In[5] we providea
detailed description of the round-off error introduced
at each iteration of the CLS a gorithmand we estimate
thevaueof £.

4. STABILITY ANALYSISOF THE ROUND-OFF
ERROR ACCUMULATION SYSTEM

If f(k, APy_;) denote the higher-order terms of (9), then

AP, = APyRj_1 APy_1 Ry_1 Py + f(k, APy_1) + ¢Py.

Looking at the linearized system, we see that 4o
AP, = X"'P.R; AP; R Py, (17)

which gives
AP < AF°K7 AR (18)

That is, the linearized round-off error propagation systemis
exponentially stable with base of decay A [1]. Thisimplies
that the nonlinear round-off error propagation systemislo-
cally exponentially stable. However, no study exists, to our
knowledge, that provides an indication as to “how small”
A Py, should be, so that theinfluence of the nonlinear and the
additiveterms does not destroy thestability properties of the
nonlinear round-off error accumulation system. Thisis our
main task in the sequel.



At first, we derive the solution of (16) as
k .
AP, = Z N PR (F(5, AP;_y) + €P;) Ri Py, (19)
=1

with f(1,APy) = 0. Then, we assumethat ||AF|| < r,
i=1,...,k—1,andweprovidean upper boundfor || A Py||.
Theorem 1: If ||[AR|| < r,fori =1,...k—1,and

r << @,then
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The proof can be foundin [5].
If we can find an », independent of £, intherange 0 <
r < % such that the right-hand side of (20) isless than or
equa tor,i.e,
Aqr? K2€e
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then by induction ||AP;|| < r, for al %, meaning that the
round-off error accumulation system is BIBO stable.
Setting ¢ = 0 in (21) we derive the bound:
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For r € (0, o], we guarantee that || A Py|| < r, for dl &, if
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In order to maximize the relative precision ¢ (that is, mini-
mize the wordlength) that guarantees BIBO stability of the
round-off error accumulation system, we have to maximize
thefunction Fiy () intheinterval (0, y]. Theextrema points
of Fyy(r) arethe solutions of the second order equation
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Maximization is achieved at
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Upper bounds for the relative precision and the accumul at-
ed round-off given the condition number &, the forgetting
factor A, and the size of the round-off error £, are

def 1 — A

—— Fo(p}), ||AP|| <pf, Vk.  (26)

The bounds (26) seem to be conservative, mainly because
in the proof of Theorem 1 [5], we have used the condition
number X as an upper bound for || P R;||. The bounds so
obtained apply in the general nonstationary case. Sharper
bounds, however, can be obtained if the input data are sta-
tionary, as we now pursue.

4.1. The Stationary Case

When the input sequence, ¢,, is stationary, then in steady-
state and for A very closeto 1, [6], [3]

PyRy_1 =~ I, forlarge k. (27)

This approximation affords the derivation of bounds which
are more realistic than the ones derived in the previous sec-
tion. The round-off error accumulation systemis

APy = AAP_i + f(k,AP_1) + €Dy (28)

The next theorem [5], providesa bound for ||A Py||.
Theorem 2: If ¢, is a stationary sequence, ||AP)|| < r
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Setting in (29) ¢ = 0 gives an upper bound for r, as
201 _
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then||A P|| < rfordl k. We deriveabound for ¢, by max-
imizing Fy(r) forr € (0,7,], @
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where
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The corresponding bound for the accumul ated round-off ac-
cumulated is
IAP] < p1, k. (34)

Thebound (32) ismuch less conservativethan (26), main-
ly because the condition number K has been replaced by u-
nity. It can be shown that [5]

1\
(<a<—, (35)



which establishes the relation between the conditioning of
the problem and the numerical stability of the CLS algorith-
m, which has been claimed inthe general context of adaptive
algorithms[7]. We also observethat therelativeprecisionis
proportional to 1 — A, which means that for A very close to
1 the round-off error accumulation is more significant, asto
be expected.

5. SAIMULATIONS

We derived upper bounds on the relative precision, e; (resp.
€1) that guarantee that the accumul ated round-off is bound-
ed by p (resp. p1). Thisgives sufficient conditionsfor the
BIBO stahility of the round-off error accumulation system
and providesan upper bound for the accuracy of the compu-
tations.

In order to check out our theoretical results we gener-
ate input data using an AR model with poles .85, .7 £ .47,
—.4 £ .65. Werun in double precision floating point arith-
metic the CLS algorithm with order M = 5and A = .99
and wederiveestimatesfor P and ®. Then, weuseformulas
(32), (34) and an estimate of & [5], to derive upper bounds
for the relative precision and the accumul ated round-off er-
ror,ase; = 1.3961 x 10~%and p = 4.0668 x 10~*, respec-
tively. We run the CLS agorithm in floating point with 20
bit precision as indicated by the value of ¢;. In Figure 1 we
plot the accumul ated round-off error, || Py — Py ||, which sat-
isfies the theoretically predicted bound (we used the double
precision variables as the reference variables). We havere-
peated thisexperiment with many different types of dataand
for millions of iterations and always the accumulated error
satisfied the predicted by our theory bound.

6. CONCLUSIONS

We have considered the problem of finite-precision imple-
mentation of the CLS agorithm, and in particular we have
computed upper boundsfor the relative precision that guar-
antee the BIBO stability of the accumulated round-off er-
ror. These bounds depend on the conditioning of the prob-
lem, K, and the forgetting factor, A. Most previous stud-
ies have considered alinearized (and hence, oversimplified)
round-off error accumulation system and thus cannot estab-
lish bounds on the rel ative precision that guarantee numeri-
cal stability of the algorithm. Our approach resembles a nu-
merical analysisone, which means that the derivation of the
bounds s based on the application of the triangle and sub-
multiplicativenorminequalities. Thisfact makesthederived
boundssomewhat conservative, especially inthegeneral non-
stationary case.
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Figure 1. Accumulated round-off error, floating point arith-
metic: 20 bit precision.



