
NUMERICAL STABILITY ISSUES OF THE CONVENTIONAL RECURSIVE LEAST
SQUARES ALGORITHM

Athanasios P. Liavas and Phillip A. Regalia
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ABSTRACT

The continuous use of adaptive algorithms is strongly de-
pendent on their behavior in finite-precision environments.
We study the nonlinear round-off error accumulation system
of the conventional RLS algorithm and we derive bounds for
the relative precision of the computations and the accumu-
lated round-off error, which guarantee the numerical stabil-
ity of the finite-precision implementation of the algorithm.
The bounds depend on the conditioning of the problem and
the exponential forgetting factor. Simulations agree with our
theoretical results.

1. INTRODUCTION

A very important “real-life” problem, inherent in the con-
tinuous use of adaptive algorithms, is their behavior in finite
precision environments. This problem contains the follow-
ing subproblems: round-off error generation, round-off er-
ror propagation, and round-off error accumulation.

For the conventional RLS algorithms the round-off error
propagation is the best studied of the three aforementioned
subproblems [1], [2]. Such studies typically examine the lin-
earized round-off error propagationsystem and derive its ex-
ponentially stability; this in turn, implies local exponential
stability of the nonlinear round-off error accumulation sys-
tem. However, no study exists, to our knowledge, that pro-
vides an indication as to “how small” the accumulated error
should be so that the influence of the nonlinear terms does
not destroy the stability properties of the overall system.

An examination of the nonlinear round-off error accu-
mulation system of the conventional RLS algorithm appeared
in [3], where a scenario for explosive divergence was de-
veloped. Explosive divergence is the occurence of “sudden
big” errors in the estimated weight vector, due to finite pre-
cision effects. This phenomenon is linked to the loss of the
positive definiteness of the finite precision inverse covari-
ance matrix, and the negative value of a theoretically posi-
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tive variable. However, the approach is mostly qualitative
and numerical stability cannot be guaranteed. This is our
main subject. We study the stabilityproperties of the nonlin-
ear round-off error accumulation system of the conventional
RLS algorithm and we derive

� An upper bound for the relative precision of the com-
putations, in terms of the conditionnumber of the prob-
lem and the forgetting factor, which guarantees that
the nonlinear round-off error accumulation system re-
mains BIBO stable.

� An upper bound for the accumulated round-off error.

2. RECURSIVE LEAST-SQUARES ALGORITHMS

For the standard least squares problem, one is given a se-
quence of M–dimensional input vectors, �t, plus a reference
sequence, ut, t = 1; : : : ; k, and is asked to compute a param-
eter vector, �k, such that

�k = argmin
kX

t=1

�k�t(ut � �t�t)
2; (1)

where � is the forgetting factor. The CLS algorithm is given
by the following recursions:

rek = �+ �tkPk�1�k (2)

�k = �k�1 +
Pk�1�k

rek
(uk � �tk�1�k) (3)

Pk =
1

�

�
Pk�1 �

Pk�1�k�
t
kPk�1

rek

�
(4)

Denoting ePk the finite-precision version of Pk, we may ex-
press the finite-precision time update of Pk as

ePk =
1

�

 ePk�1�
ePk�1�k�

t
k
ePk�1erek

!
+ � ePk; (5)

where the term � ePk denotes the local round-off error in the
computation of Pk.



3. THE ROUND-OFF ERROR ACCUMULATION
SYSTEM

Let �x be the accumulated round-off error in x. Then

�Pk = ePk � Pk; (6)

�rek = erek � rek = �tk�Pk�1�k: (7)

If

�����rek
rek

���� < 1 we can expand the second term of (5) as

ePk�1�k�
t
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ePk�1ere

k
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Pk�1�k�
t
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t
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�
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�rek
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+

�
�rek
rek

�2

� � � �| {z }
t2(k;�Pk�1)| {z }

t1(k;�Pk�1)| {z }
t0(k;�Pk�1)

�
; (8)

where we have used the fact that�Pk�1 is symmetric, which
is necessary for the convergence of the algorithm in finite
precision [4], and trivially imposed in a finite precision im-
plementation. Thus
�Pk =

1

�

�
�Pk�1+

Pk�1�k�
t
kPk�1

rek

�rek
rek

�
2Pk�1�k�

t
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t
k�Pk�1

re
k

t0(k;�Pk�1)

�
+ � ePk: (9)

The study of (9) is of primordial importance for the “real-
life” finite-precision implementation of the CLS algorithm.
However, it seems that the existence of the higher-order terms
(inside the second set of parentheses) has been a major ob-
stacle towards this purpose. In the sequel we study the non-
linear difference equation (9) and we derive sufficient con-
ditions for its BIBO stability, which implies numerical sta-
bility of the CLS algorithm.

3.1. Assumptions

1. The regressor vector�t is persistently exciting, that is,
9 a, b such that 0 < a < b <1 and

a I �

kX
t=1

�k�t�t�
t
t � b I; for all k > k0: (10)

Thus, there exist constants R and P such that

jjRkjj � R; and jjPkjj � P; for all k; (11)

where jj � jj denotes the 1-norm. The validity of the
bounds in (11) for k < k0 can be guaranteed by a
“soft” start. If we assume that

jj�tjj � �; for all t; (12)

then R can be expressed as

R �
�2

1� �
; (13)

and an upper bound for the condition number of the
estimated data covariance matrix is

K
def
= RP �

P�2

1� �
: (14)

2. The round-off error � ePk is bounded as������� ePk

������ � E �; for all k; (15)

where � denotes the relative precision of the computa-
tions and E is a bounded constant. In [5] we provide a
detailed description of the round-off error introduced
at each iteration of the CLS algorithm and we estimate
the value of E .

4. STABILITY ANALYSIS OF THE ROUND-OFF
ERROR ACCUMULATION SYSTEM

If f(k;�Pk�1) denote the higher-order terms of (9), then

�Pk = �PkRk�1 �Pk�1Rk�1Pk + f(k;�Pk�1) + � ePk:

(16)
Looking at the linearized system, we see that

�Pk = �k�iPkRi �Pi RiPk; (17)

which gives

jj�Pkjj � �k�iK2 jj�Pijj: (18)

That is, the linearized round-off error propagation system is
exponentially stable with base of decay � [1]. This implies
that the nonlinear round-off error propagation system is lo-
cally exponentially stable. However, no study exists, to our
knowledge, that provides an indication as to “how small”
�Pk should be, so that the influence of the nonlinear and the
additive terms does not destroy the stability properties of the
nonlinear round-off error accumulation system. This is our
main task in the sequel.



At first, we derive the solution of (16) as

�Pk =
kX

i=1

�k�iPkRi (f(i;�Pi�1) + �Pi)RiPk; (19)

with f(1;�P0) = 0. Then, we assume that jj�Pijj � r,
i = 1; : : : ; k�1, and we provide an upper bound for jj�Pkjj.

Theorem 1: If jj�Pijj � r, for i = 1; : : : ; k � 1, and

r <
�

�2
, then

jj�Pkjj �

A1z }| {
�2
�
K+ P�2

�2
r2

�(1� �)(� ��2r)
+
K2 E �

1� �
: (20)

The proof can be found in [5].
If we can find an r, independent of k, in the range 0 <

r <
�

�2
, such that the right-hand side of (20) is less than or

equal to r, i.e.,

jj�Pkjj �
A1r

2

�(1� �)(�� �2r)
+
K2E�

1� �
� r; (21)

then by induction jj�Pkjj � r, for all k, meaning that the
round-off error accumulation system is BIBO stable.

Setting � = 0 in (21) we derive the bound:

r � r0
def
=

�2(1 � �)

A1 + �(1� �)�2| {z }
A2

: (22)

For r 2 (0; r0], we guarantee that jj�Pkjj � r, for all k, if

� �
1� �

K2E

�
r �

A1r
2

�(1� �)(� � �2r)

�
:| {z }

F0(r)

(23)

In order to maximize the relative precision � (that is, mini-
mize the wordlength) that guarantees BIBO stability of the
round-off error accumulation system, we have to maximize
the functionF0(r) in the interval (0; r0]. The extremal points
of F0(r) are the solutions of the second order equation

�2(A1 + A2)r
2 � 2�(A1 +A2)r +

�2

�2
A2 = 0: (24)

Maximization is achieved at

�01 =
�

�2

 
1�

p
A2
1 +A1A2

A1 +A2

!
: (25)

Upper bounds for the relative precision and the accumulat-
ed round-off given the condition number K, the forgetting
factor �, and the size of the round-off error E , are

� � �0
def
=

1� �

K2E
F0(�

0
1); jj�Pkjj � �01; 8k: (26)

The bounds (26) seem to be conservative, mainly because
in the proof of Theorem 1 [5], we have used the condition
number K as an upper bound for jjPkRijj. The bounds so
obtained apply in the general nonstationary case. Sharper
bounds, however, can be obtained if the input data are sta-
tionary, as we now pursue.

4.1. The Stationary Case

When the input sequence, �t, is stationary, then in steady-
state and for � very close to 1, [6], [3]

PkRk�1 � I; for large k: (27)

This approximation affords the derivation of bounds which
are more realistic than the ones derived in the previous sec-
tion. The round-off error accumulation system is

�Pk = ��Pk�1 + f(k;�Pk�1) + � ePk (28)

The next theorem [5], provides a bound for jj�Pkjj.
Theorem 2: If �t is a stationary sequence, jj�Pijj � r

for i = 1; : : : ; k� 1, and r <
�

�2
, then

jj�Pkjj �

�1z }| {
�2
�
(1� �)P�2 + 3� 2�

�
r2

�(1� �)(� ��2r)
+

E�

1� �
(� r)

(29)
Setting in (29) � = 0 gives an upper bound for r, as

r � r1
def
=

�2(1� �)

�1 + A2
: (30)

For each r 2 (0; r1], if

� �
1� �

E

�
r �

�1r
2

�(1 � �)(� � �2r)

�
;| {z }

F1(r)

(31)

then jj�Pkjj � r for all k. We derive a bound for �, by max-
imizing F1(r) for r 2 (0; r1], as

� � �1
def
=

1� �

E
F1(�

1
1); (32)

where

�11 =
�

�2

 
1�

p
�21 + �1A2

�1 + A2

!
: (33)

The corresponding bound for the accumulated round-off ac-
cumulated is

jj�Pkjj � �11; 8k: (34)

The bound (32) is much less conservative than (26), main-
ly because the condition number K has been replaced by u-
nity. It can be shown that [5]

� � �1 <
1� �

K
; (35)



which establishes the relation between the conditioning of
the problem and the numerical stability of the CLS algorith-
m, which has been claimed in the general context of adaptive
algorithms [7]. We also observe that the relative precision is
proportional to 1 � �, which means that for � very close to
1 the round-off error accumulation is more significant, as to
be expected.

5. SIMULATIONS

We derived upper bounds on the relative precision, �0 (resp.
�1) that guarantee that the accumulated round-off is bound-
ed by �01 (resp. �11). This gives sufficient conditions for the
BIBO stability of the round-off error accumulation system
and provides an upper bound for the accuracy of the compu-
tations.

In order to check out our theoretical results we gener-
ate input data using an AR model with poles :85, :7 � :4j,
�:4 � :6j. We run in double precision floating point arith-
metic the CLS algorithm with order M = 5 and � = :99
and we derive estimates forP and �. Then, we use formulas
(32), (34) and an estimate of E [5], to derive upper bounds
for the relative precision and the accumulated round-off er-
ror, as �1 = 1:3961�10�6 and �10 = 4:0668�10�4, respec-
tively. We run the CLS algorithm in floating point with 20
bit precision as indicated by the value of �1. In Figure 1 we
plot the accumulated round-off error, jjPk� ePkjj, which sat-
isfies the theoretically predicted bound (we used the double
precision variables as the reference variables). We have re-
peated this experiment with many different types of data and
for millions of iterations and always the accumulated error
satisfied the predicted by our theory bound.

6. CONCLUSIONS

We have considered the problem of finite-precision imple-
mentation of the CLS algorithm, and in particular we have
computed upper bounds for the relative precision that guar-
antee the BIBO stability of the accumulated round-off er-
ror. These bounds depend on the conditioning of the prob-
lem, K, and the forgetting factor, �. Most previous stud-
ies have considered a linearized (and hence, oversimplified)
round-off error accumulation system and thus cannot estab-
lish bounds on the relative precision that guarantee numeri-
cal stability of the algorithm. Our approach resembles a nu-
merical analysis one, which means that the derivation of the
bounds is based on the application of the triangle and sub-
multiplicativenorm inequalities. This fact makes the derived
bounds somewhat conservative, especially in the general non-
stationary case.
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Figure 1. Accumulated round-off error, floating point arith-
metic: 20 bit precision.


