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ABSTRACT

Multichannel blind deconvolution has received increasing atten-
tion during the last decade. Recently, Martone [3, 4] extended the
super-exponential method proposed by Shalvi and Weinstein [1,
2] for single-channel blind deconvolution to multichannel blind
deconvolution. However, the Martone extension suffers from two
type of serious drawbacks. The objective of this paper is to obviate
these drawbacks and to propose three approaches to multichannel
blind deconvolution. In the first approach, we present a multi-
channel super-exponential algorithm. In the second approach, we
present a super-exponential deflation algorithm. In the third ap-
proach, we present a two-stage super-exponential algorithm.

1. INTRODUCTION

Blind deconvolution, in particular, multichannel blind deconvolu-
tion has received increasing attention during the last decade, and it
arises in a wide variety applications, for example, in array process-
ing for wideband sources under multipath propagation, in speech
and image enhancement, and in digital communication; see [1]-[5]
and references therein.

Recently, Shalvi and Weinstein proposed an attractive approach
to single-channel blind deconvolution (which is called thesuper-
exponential method[1, 2]), which was extended to the multichan-
nel case by Martone [3, 4]. However, the Martone algorithm suf-
fers from two types of serious drawbacks. The first one is that it
can be only applied to the case where all the elements of input
sources possess identical variances and identical fourth-order cu-
mulants. The second one is that the algorithm fails to converge to a
desired solution, except when it starts in a small vicinity of the de-
sired solution (this means the local convergence of the algorithm is
guaranteed). The objective of this paper is to obviate these draw-
backs and to derive super-exponential algorithms for multichannel
blind deconvolution.

In this paper, we propose three approaches to multichannel
blind deconvolution. In the first approach, we present a multichan-
nel super-exponential algorithm, which can be applied to a general
case where the elements of input signals possess various variances
and various fourth-order cumulants. This algorithm is an exten-
sion of the Martone algorithm to the case where the elements have
various variances and various fourth-order cumulants. In the sec-
ond approach, we present a super-exponential deflation algorithm.
This algorithm is input-iterative, i.e., the input signals are extracted
at each output and cancelled from each output one by one. Thus
the number of the input signals (sources) is deflated one by one in

the algorithm. In the third approach, we present a two-stage super-
exponential algorithm, which unifies the above two algorithms. It
is a two-stage algorithm. In the first stage, the first algorithm is
used to obtain rough results for the initialization of the second al-
gorithm. Then the second algorithm is employed to obtain better
results. Simulation examples are presented to illustrate the perfor-
mance of the proposed algorithms.

The following notation will be used in this paper. The su-
perscripts�, T andy denote respectively the complex conjugate,
the transpose and the pseudo-inverse operations of a matrix. The
(i; j)th element of a matrixX is denoted byxi;j , and theith ele-
ment of a vectorx is denoted byxi. The variance or the second-
order cumulant of random variablex is denoted by�2x or cum2(x).
Its fourth-order cumulant is denoted by cum4(x). The joint cumu-
lant of random variablesx1, x2, � � �, xn is denoted by cumfx1; x2;
� � � ; xng.

2. PROBLEM FORMULATION

Let us consider the cascade system of an unknown LTI system
with n inputs andm outputs and an equalizer withm inputs andn
outputs, which is illustrated in Fig. 1.
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Figure 1: Cascade system of the Unknown System and an Equal-
izer

We make the following assumptions on the systems and sig-
nals involved

(A1) The systemH(z) is unknown. It is stable in the sense that

1X
k=�1

kH(k)k <1; (1)

wherek � k denotes the Euclidean matrix norm.



(A2) The transfer functionH(z) of the unknown system is of full
column rank on the unit circlejzj = 1 (this implies that the
unknown system has less inputs than outputs i.e.,n � m,
and there exists a left-inverse of the unknown system which
is stable in the sense of (1)).

(A3) The input sequencefs(t)g is a zero-mean , non-Gaus-
sian random vector process, whose element processfsi(t)g,
i = 1; 2; � � � ; n are mutually independent. Moreover, each
element processfsi(t)g is an independently and identically
distributed (i.i.d) process with nonzero variance�2i 6= 0 and
nonzero fourth-order cumulant
i 6= 0.

(A4) The equalizerW (z) is stable. It is assumed to be an FIR
system of sufficient lengthL, so that the truncation effect
can be ignored.

In a vector form, the cascade systemG(z) can be written as

~gi =
~H ~wi; i = 1; 2; � � � ; n; (2)

where~gi is the column vector (of possibly infinite elements) con-
sisting of theith-output impulse responses of the cascade system
defined by

~gi := [gTi;1; g
T
i;2; � � � ; g

T
i;n]

T ; (3)

gi;j := [� � � ; gi;j(�1); gi;j(0); gi;j(1); � � �]
T ; (4)

~wi is theLm-column vector consisting of the tap coefficients (cor-
responding to thei-th output) of the equalizer defined by

~wi := [wT
i;1;w

T
i;2; � � � ;w

T
i;m]T ; (5)

wi;j := [wi;j(L1); wi;j(L1 + 1); � � � ; wi;j(L2)]
T ; (6)

and ~H is then �m block matrix defined by

~H :=

2
664
H1;1 H1;2 � � � H1;m

H2;1 H2;2 � � � H2;m

...
...

...
...

Hn;1 Hn;2 � � � Hn;m

3
775 ; (7)

whose(i; j)th block elementHi;j is the matrix (ofL columns
and possibly infinite number of rows) with the(l; r)th element
[Hi;j ]l;r defined by

[H i;j ]l;r := hj;i(l�r); �1 < l < +1; L1 � r � L2: (8)

In the multichannel blind deconvolution problem, we want to
adjust ~wi ’s (i = 1; � � � ; n) so that

[~g1; � � � ; ~gn] = ~H[ ~w1; � � � ; ~wn] = [~�1; � � � ; ~�n]P; (9)

whereP is ann � n permutation matrix and~�i is then-block
column vector defined by

~�i := [�Ti;1; �
T
i;2; � � � ; �

T
i;n]

T (10)

�i;j :=

�
�̂i if i = j
(� � � ; 0; 0; 0; � � �)T otherwise

(11)

Here�̂i is the column vector (of infinite elements) whoserth ele-
ment�̂i(r) is given by

�̂i(r) = di�(r � ki) (12)

where�(t) is the Kronecker delta function,di is a complex number
standing for both the scale change and the phase shift, andki is an
integer standing for the time shift.

3. MULTICHANNEL SUPER-EXPONENTIAL
ALGORITHM

In this section, we extend the Martone algorithm [3] for a restricted
case to a general case where the elements of input signalssi(t)’s
possess various variances and various fourth-order cumulants. By
adjusting the elementsgi;j(k)’s for the cascade system, it is pos-
sible to obtain an iterative procedure that converges to a desired
solution.

Martone [3] proposed the following two-step iterative proce-
dure:

gi;j(k)
[1] = (gi;j(k))

p(g�i;j(k))
q; (13)

gi;j(k)
[2] = gi;j(k)

[1] 1qPn

j=1

P
l
jgi;j(l)[1]j2

: (14)

where(�)[1]; (�)[2] stand for the result of the first step and the result
of the second step for an iteration, andp andq are positive integers
such thatp+ q � 2. In this paper, we consider the following two-
step procedure:

gi;j(k)
[1] =

�j
�2j

(gi;j(k))
p(g�i;j(k))

q; (15)

gi;j(k)
[2] = gi;j(k)

[1] 1qPn

j=1

P
l
�2j jgi;j(l)

[1]j2
: (16)

where

�j = cum(sj(t); � � � ; sj(t)| {z }
p

; s�j (t); � � � ; s
�
j (t)| {z }

q+1

)

and�2j = cum2(sj(t)) for j = 1; 2; � � � ; n.
In this paper, for notationally simplicity, we confine ourselves

to the casep = 2 andq = 1 (which gives a solution in terms of
fourth-order cumulants), although our results are expandable to a
general(p; q) case (higher-order cumulant case).

We turn to the two-step procedure (15) and (16) withp = 2,
q = 1 and�j = 
j for j = 1; � � � ; n. According to (15), let us
define

fi;j(k) :=

j
�2j

g2i;j(k)g
�
i;j(k) (17)

and put

~f i := [fT
i;1;f

T
i;2; � � � ;f

T
i;n]

T ; (18)

f i;j := [� � � ; fi;j(�1); fi;j(0); fi;j(1); � � �]
T : (19)

Taking account of (9), we want to find equalizer tap vectors~wi’s
by solving the weighted least squares problem

min
~wi

( ~H ~wi � ~fi)
T� ~�( ~H ~wi � ~fi); i = 1; 2; � � � ; n; (20)

whose solutions denoted by~w[1]
i ’s are easily given by

~w
[1]
i = ( ~HT� ~� ~H)�1 ~HT� ~� ~fi; i = 1; 2; � � � ; n: (21)

According to the weighted normalization in (16), it is easily shown
that the second step is reduced to

~w
[2]
i =

~w
[1]
iq

~w
[1]T�

i ( ~H
T� ~� ~H) ~w

[1]
i

; i = 1; 2; � � � ; n; (22)



where~� is then� n block diagonal matrix defined by

~� :=

2
664

�1;1 0 � � � 0
0 �2;2 � � � 0
...

...
...

...
0 0 � � � �n;n

3
775 ; (23)

�i;i := �2i I; i = 1; 2; � � � ; n:

HereI denotes the identity matrix of possibly infinite number of
columns and rows.

Then it will be shown that the two steps (21) and (22) can be
expressed in terms of the variances and covariances of the outputs
of the original system and of the fourth-order (cross-) cumulants of
the system outputs and the equalizer outputs. By straight forward
calculations, we obtain the following two steps of each iteration of
the multichannel super-exponential algorithm:

~w
[1]
i = ~R

�1 ~Di; i = 1; 2; � � � ; n; (24)

~w
[2]
i =

~w
[1]
iq

~w
[1]T�

i
~R ~w

[1]
i

; i = 1; 2; � � � ; n; (25)

where ~R is them�m block matrix defined by

~R =

2
664

R1;1 R1;2 � � � R1;m

R2;1 R2;2 � � � R2;m

...
...

...
...

Rm;1 Rm;2 � � � Rm;m

3
775 (26)

whose(i; j)th block elementRi;j is theL � L matrix with the
(l; r)th element[Ri;j ]l;r defined by

[Ri;j ]l;r := cum(yj(t� r); y�i (t� l)); (27)

andDi is then-block vector defined by

~Di :=
�
d
T
i;1;d

T
i;2; � � � ;d

T
i;n

�T
(28)

whosejth block element is theL-column vector with therth ele-
ment[di;j ]r defined by

[di;j ]r := cum(zi(t); zi(t); z
�
i (t); y

�
j (t� r)): (29)

4. SUPER-EXPONENTIAL DEFLATION ALGORITHM

In this section, we present a deflation algorithm which converges
globally to a desired solution except for pathological cases (for ex-
ample, there are two leading taps of the initial taps of the cascade
system, that exactly take the same absolute value). This algorithm
is input-iterative, i.e., the input signals are extracted at each out-
put and cancelled at each output one by one. In this algorithm, we
first apply the multichannel super-exponential algorithm presented
in Section 3 to the outputs of the original system withm outputs
andn inputs to extract only one input, and we estimate the con-
tribution of the extracted input to the outputs. Then we remove
this contribution from the outputs to define the output of a multi-
channel system withm outputs andn � 1 inputs. We next apply
the multichannel super-exponential algorithm to the outputs of the
system withm outputs andn� 1 inputs to extract the next input.

We continue this process successively until we extract the last in-
put. Now let us introducen mL-column vectors as intermediate
tap-coefficient vectors of equalizers as follows:

~ci := [cTi;1; c
T
i;2; � � � ; c

T
i;m]T ; i = 1; � � � ; n (30)

ci;j := [ci;j(L1); ci;j(L1 + 1); � � � ; ci;j(L2)]
T : (31)

Then then input signals are extracted successively by using the
following algorithm.

Super-Exponential Deflation Algorithm

Step 1. Seti = 1 (wherei denote the order of an input ex-
tracted).

Step 2. Carry out the following iterations enough to extract an
input: Each of the iterations consist of the two steps as follows.

~c
[1]
i = ~R

y
iDi (32)

~c
[2]
i =

~c
[1]
iq

~c
[1]T�

i
~Ri~c

[1]
i

: (33)

where ~Ri and ~Di are respectively calculated by (26) along with
(27) and (28) along with (29) using the values of the outputsyk(t)’s
(k = 1; � � � ; m) and the values of the equalizer outputszi(t)’s
with wi;j(k)’s replaced by the corresponding values ofci;j(k)’s
obtained before the iteration.

Step 3. As a possibly scaled and time-shifted estimate of an
input sji(t), calculate the equalizer outputzi(t) by

zi(t) =

mX
j=1

X
k

ci;j(k)yj(t� k); (34)

whereci;j(k)’s are the new values obtained in Step 2. Then cross-
correlatezi(t)’s with the outputsyk(t)’s and define a possibly
scaled and time-shifted estimate ofhk;ji (�) as

ĥk;ji(�) := Efyk(t)z
�
i (t� � )g; k = 1; 2; � � � ;m: (35)

Then consider the reconstructed contribution ofzi(t) to the out-
putsyk(t)’s, defined by

ŷk;ji(t) :=
X
�

ĥk;ji(� )zi(t� � ): (36)

Step 4. Remove the above contribution from the outputsyk(t)’s
to define the outputs of a linear system withm outputs andn � 1
inputs. These are given by

y
(i)
k (t) := yk(t)� ŷk;ji (t); k = 1; � � � ;m (37)

Step 5. Ifi < n, then seti = i + 1 andyk(t) = y
(i)
k (t) for

k = 1; � � � ;m, and go back to Step 2. Ifi = n, then stop here.
In implementing the above algorithm, all the cumulants in (27)

and (29) and all the expectations in (35) are replaced with their
samples averages over appropriate data records.



Table 1: The averageMISI values over 50 Monte Calro runs

MISI(dB)
Super-Exponential Algorithm 9.8889

Super-Exponential Deflation Algorithm -18.0110
Two-Stage Super-Exponential Algorithm -21.0904

5. TWO-STAGE SUPER-EXPONENTIAL ALGORITHM

The multichannel super-exponential algorithm of Section 3 con-
verges to a desired solution only if it starts in a small neighborhood
of the desired solution, while the super-exponential deflation algo-
rithm of Section 4 converges to a desired solution almost always
(i.e., except for pathological cases). However, we have experi-
enced about the second algorithm through simulation experiments
that the results of recovered input signals gradually degrade as the
order of the recovered input signals increases. In order to remedy
this defect, we propose a two-stage super-exponential algorithm as
follows.

Two-Stage Super-Exponential Algorithm

Stage 1. Use the super-exponential deflation algorithm to find
rough results on tap-coefficientsci;j(k)’s and im-
pulse-response estimatesĥk;ji(�)’s as the initialization required in
Stage 2.

Stage 2. Use the multichannel super-exponential algorithm to
find better results on over-all equalizerW (z).

6. SIMULATIONS

In order to see the performance of the proposed algorithms, we
considered the following example. The unknown system was given
by

H(z) =

"
0:5+z�1

1+0:5z�1
0

0 0:2+z�1

1+0:2z�1

#�
1
2

�
p
3

2p
3
2

1
2

�

and the first component of input signalsfs1(t)g was taken from a
16-QAM source and the second component of input signalsfs2(t)g
was taken from a 4-QAM source. As a measure of performance we
used the multichannel intersymbol interference denoted byMISI,
defined by

MISI :=

nX
i=1

j
Pn

j=1

P1
t=�1 jgi;j(t)j

2 � jgi;�j2maxj

jgi;�(�)j2max

+

nX
j=1

j
Pn

i=1

P1
t=�1 jgi;j(t)j

2 � jg�;j j2maxj

jg�;j(�)j2max

The lengthL of the equalizers was chosen to be 12. First, we
set the values of the tap coefficientsfwi;j(t) : t = 0; 1; � � � ; 11;
i; j = 1; 2g to be zero, except forw1;1(5) = w2;2(5) = 2=3
andw1;2(5) = w2;1(5) = 1=3, and then we examined the first
algorithm using these values as the initialization of the equalizer.
The algorithm failed always to converge to a desired solution, and
failed to recover the second source. We next examined the sec-
ond algorithm using randomly chosen values as the initialization

of the intermediate equalizers, and then examined the third algo-
rithm using the results obtained by the second algorithm as the
initialization of the over-all equalizer. The second and the third
algorithms converged to a desired solution, and succeeded in re-
covering the first and the second sources. The three algorithms
were respectively tested in 50 independent Monte Carlo runs us-
ing 3,000 data samples of each of the two outputs. The average
MISI is shown in Table 1 for each algorithm. It can be seen from
Table 1 that the third algorithm shows better performance than the
second algorithm.

7. CONCLUSIONS

The Martone algorithm for multichannel blind deconvolution un-
dergoes two types of serious drawbacks. To remedy these draw-
backs, we proposed the three approaches to multichannel blind de-
convolution. In the first approach, we presented the multichannel
super-exponential algorithm which is locally convergent but can be
applied to the general case where the elements of input signals pos-
sess various variances and various fourth-order cumulants. In the
second approach, we presented the super-exponential deflation al-
gorithm which is globally convergent almost always but has worse
performance than the first algorithm. In the third approach, we
proposed the two-stage super-exponential algorithm which unifies
the advantages of the above two algorithms. Simulation examples
illustrated the performance of the proposed algorithms.
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