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ABSTRACT

In this paper, we present a structure for implementing the polyphase
filters of biorthogonal modulated filter banks that automatically
guarantees perfect reconstruction of the filter bank and further-
more allows to specifiy the values of the filters’ frequency re-
sponses at certain frequencies. Thus, modulated filter banks with-
out DC leakage can be designed. The new stucture is based on
lifting schemes for the polyphase filters and DC leakage can be
avoided very easily when reducing the number of lifting coeffi-
cients that can be freely chosen and used for filter optimization.
The great advantage of the new method is that we do not have to
take constraints into consideration when optimizing the prototype
filter, but PR and specified zeros are structure inherent.

1. INTRODUCTION

Cosine-modulated filter banks have been studied extensively in lit-
erature within the last 10 years. They have shown to provide a
very efficient implementation based on a prototype filter and a fast
cosine transform. The filter bank can be designed such as to be
paraunitary or to result in a low system delay. In the latter case,
also called biorthogonal case, the overall system delay can be cho-
sen independently (within some fundamental limits) of the filter
length and the number of subbands. As has been shown in [1, 2]
one can still use a common prototype for the analysis and synthe-
sis. Design methods for the prototype mainly base on two different
philosophies: It is either possible to use a constrained optimiza-
tion (with the PR conditions as constraints) of the prototype’s fre-
quency response. This has led to the QCLS-algorithm [3, 4, 1].
A second possibility consists of deriving a structure that automati-
cally guarantees PR of the filter bank. In the paraunitary case, such
a structure is given by the well known lattice-structure [5] con-
taining rotations for the lattice coefficients. For biorthogonal filter
banks such structures have been derived in [6, 2, 7] and non-linear,
non-constrained optimization methods are used for the prototype
design. Compared to the QCLS-algorithm, the latter algorithms
offer the advantage to be robust against coefficient quantization,
thus allowing an efficient filter implementation with integer-valued
coefficients [2, 8, 9].

We here extend the method proposed in [7] based on the use of
lifting schemes [10, 11] for the polyphase filters’ implementation
in order to design filters with specified zeros at certain frequencies.
This allows the design of cosine-modulated filter banks without
DC leakage, meaning that the DC component of an input signal

only affects the subband signal in the lowest band. In such a filter
bank all analysis filters apart from the lowpass filter must have a
zero at frequency zero. This is an additional necessary condition to
those for PR and we show that it can be incorporated in the lifting
schemes, resulting in a structurally inherent feature.

In the following we consider cosine-modulated filter banks withM

subbands and restrict ourselves to the case where the filter length
N is a multiple of2M , i.e. N = 2mM and the overall system
delayD given byD = 2sM+M�1. As shown in [4] the analysis
and synthesis filters,Hk(z) andFk(z), of such a filter bank can
be derived from a prototypeP (z) by DCT-IV modulation:
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and the PR constraints can be expressed on the prototype’s type-1
polyphase filtersgk(m) = p(2mM + k), k = 0; : : : ; 2M � 1,
according to
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for 0 � ` < M andD = 2sM +M � 1.

2. COSINE-MODULATED FILTER BANKS WITHOUT
DC LEAKAGE

Figure 1 shows the magnitude frequency responses of the analysis
filters for anM -channel cosine-modulated filter bank as well as
the prototype.
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Figure 1: Magnitude frequency responses of analysis filters and
prototype

The cosine-modulated filter bank is free of DC leakage if the anal-
ysis filtersHk(!), k > 0, have at least one zero at frequency zero,
i.e. Hk(0) = 0 for k = 1; : : : ;M � 1. The lowpass filter has to
satisfyH0(0) = 1.



Applying the discrete Fourier transform

H(!) =

N�1X
n=0

h(n)e�j!n; (4)

and using (1) we obtain forHk(0) =
PN�1

n=0 hk(n) the following
relationship:
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Taking into consideration the4M periodicy inn of c(k; n), as well
asc(k; n) = �c(k; n+ 2M) and changing the summation index
n into n = 2�M + �, we obtain

Hk(0) =

2M�1X
�=0
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2 p(2�M + �)| {z }
g�(�)

(�1)�c(k; �)

which may also be written as

Hk(0) =
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�=0
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g�(�)(�1)�; (6)

k = 0; : : : ;M � 1, or in matrix form as

C� = h (7)
with

[C]k;� = c(k; �); k = 0; : : : ;M � 1; � = 0; : : : ; 2M � 1

� = [�0 : : : ; �2M�1]
T

h = [H0(0); : : : ; HM�1(0)]
T

In order to prevent DC leakage we have to chooseh=[1; 0 : : : 0]T.

In the following section we present an implementation of the poly-
phase filtersg`(n) that automatically guarantees PR of the filter
bank and is especially suited to incorporate the condition (7) in
order to obtain the desired zeros. Since (7) is an underdetermined
linear set of equations, it has an infinite number of solutions. How-
ever, we restrict us to those solutions satisfying

���2M�1�� + ��+M�M�1�� =
(�1)s

2M
; (8)

because they can be easily incorporated in the filter design method
based on lifting schemes. One possible solution for�� writes:
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; � = 0; : : : ; 2M � 1: (9)

3. THE LIFTING SCHEME

The lifting scheme was introduced in [10, 11] in order to construct
biorthogonal and second generation wavelets. It has been proved
in [7] that the polyphase filters of PR modulated filter banks can
also be designed using lifting and that this structure automatically
guarantees the PR property of the bank.

The main idea of lifting is demonstrated in Figure 2. One starts
with a set of short filtersG�(z) satisifying the PR constraint (3)
and increases the length of two filters by means of a new filter

A(z). Since the same signal that is added to the original subbands
by this step on the analysis side is substracted on the synthesis
side, we keep the PR property for anyA(z). In terms of the PR
conditions this means that the identity matrix in (3) is replaced by�

1 0
0 1

�
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��
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�
A lifting step is typically followed by a dual lifting step where
the length of the remaining two filters is increased. Overall, one
alternates lifting and dual lifting to construct filters of the desired
length.
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Figure 2: Construction of new polyphase filters using lifting

While the structure in Figure 2 increases the filter length and keeps
the delay fixed, other schemes may be considered where both, the
filter length and the delay, are increased.

3.1. Starting point

As a starting point for the construction of a cosine-modulated filter
bank without DC leakage we take the length-1 polyphase filters as
G`(z) = ~g`, ` = 0; : : : ; 2M � 1, that satisfy the PR constraint
(3) when being connected with some delay:�
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In the following we will show that the valuesg` cannot be chosen
arbitrarily but will be determined by condition (9) imposed on the
final length-m polyphase filters to prevent DC leakage. Note that
for length-1 filters we have�` = ~g`.

3.2. Increasing the Filter Length

We can now increase the polyphase filter length using the lifting
scheme. With one lifting or dual lifting step, we always increase
the polyphase filters by one tap, thus the prototype by2M taps.

3.2.1. Zero-Delay Lifting

Let us start with a set of length-1 polyphase filtersG`(z) that sat-
isfy (10). In order to obtain new polyphase filtersGnew

` (z) and
Gnew
M�1�`(z), we replace the identity matrix in (10) by a product

of a matrixA and its inverse:
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This results in polyphase filters being one tap longer:

G
new
` (z) = G`(z) + az

�1
GM+`(z); (12)

G
new
M�1�`(z) = �az�1G2M�1�`(z) +GM�1�`(z): (13)



In a similar way, for the remaining two polyphase filters in (10)
we can increase the length by one when applying a so-called dual
lifting step after the lifting step and expressing the identity matrix
in (10) by

BB
�1 =
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1 b
0 1

��
1 �b
0 1

�
(14)

yielding

G
new
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G
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M�1�`(z): (16)

After these two steps all polyphase filters are increased by one
tap. The valuesa andb are free parameters that will be used for
optimization of the prototypes frequency response. From (12) we
obtain for�new` =

P
n g
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and similarly:
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In matrix notation, we have
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This kind of lifting is called zero-delay lifting since we do increase
the filter length but keep the overall system delay constant when
performing a lifing and a dual lifting step. The upper procedure
can be iterated.

3.2.2. Maximum-Delay Lifting

A second way to obtain new polyphase filters is to incorporate a
maximal part of the necessary delay on the right-hand side of (3)
into the lifting scheme. We start with a set of polyphase filters
G�(z) satisfying:
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with a � s, and replacez�1
�
1 0
0 1
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in the upper equation by
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z
�1
DD

�1 =

�
1 d

0 z�1

� �
z�1 �d
0 1

�
(27)

for the dual lifting step, yielding
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The PR contraints (25) for the new polyphase filters write:�
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The polyphase filters’ length is increased by one tap and the de-
lay parametera reduced by two. Maximum-delay lifting can be
iterated whileanew = a� 2 is at least two.

3.2.3. Single-Delay Lifting

If the delay parameters is odd, maximum-delay lifting ends with
anew = 1. The remaining single delay stepz�1 on the left-hand
side of (25) can still be incorporated in the lifting scheme when
combining a zero-delay lifting step with a maximum-delay dual
lifting step, yielding new polyphase filtersGnew

` (z),Gnew
M�1�`(z)

according to (12) and (13), and polyphase filtersGnew
M+`(z) and

Gnew
2M�1�`(z) according to (30) and (31). The values�new
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3.3. Final Implementation

The final implementation of the polyphase filters is described in
(23). lmax is set to 0 for evens and to 1 for odds. The free
variables for the non-linear non-constrained optimization are given
by theai, bi, ci, di. For perfect reconstruction the values~g` just
have to satisfy the PR constraint given in (10), resulting in three
additional free variables. However, for the filter bank to be free of
DC leakage, the final polyphase filterG`(z) must satisfy (9) which
determines~g` as shown in (24). We still have to verify that these
values~g` also satisfy the PR constraint in (10). Multiplying the
upper and the lower equation in (24) we obtain:

~g`~g2M�1�` + ~gM+`~gM�1�`

= (�`�2M�1�` + �M+`�M�1�`)(�1)s (36)

and thus with (8) the PR constraint (10).
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with �`,�`+M , �M�1�`, and�2M�1�` according to (9)

4. DESIGN EXAMPLE

Figure 3 shows the analysis filters magnitude frequency responses
for a 4-channel cosine-modulated filter banks obtained by non-
linear optimization of (23) and (24). The filter length isN = 32

and the system delayD = 31. All analysis filters apart from the
lowpass have a zero at frequency zero.
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Figure 3: Analysis filters of a 4-channel cosine-modulated filter
bank without DC leakage

5. CONCLUSIONS

In this paper we have presented an implementation for the proto-
type filters of biorthogonal cosine-modulated filter
banks that automatically guarantees PR of the bank as well as a
zero of all analysis filters apart from the lowpass filter at frequency
zero. It is based on the lifting scheme and in order to obtain no DC
leakage just the values~g` of the first lifting step have to be fixed.
The frequency response of the prototype can be optimized using
non-linear optimization methods. The coefficients are robust to
quantization and the proposed implementation can also be used in
order to design integer coefficient prototypes.
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