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ABSTRACT
This paper deals with automatic speech recognition robust-
ness for noisy wireless communications. We propose sev-
eral solutions to improve speech recognition over the cel-
lular network. Two architectures are derived for the recog-
nizer. They are based on Hidden Markov Models (HMMs)
adapted to adverse noise conditions. Then two more spe-
cific solutions aiming to alleviate GSM cellular network de-
fects (holes and impulsive noise) are developed. Holes are
detected and rejected. Impulsive noises are modeled using
mixture density HMMs and a maximum likelihood crite-
rion. These solutions allow a noticeable recognition error
reduction. The last one seems to be promising.

1. INTRODUCTION

Speech recognition systems operating in a practical environ-
ment may have to deal with a wide variety of disturbances.
Besides, the rapid development of cellular networks offers
new opportunities for the application of speech recognition.
However, this involves adverse environments of use such as
running cars, public places, etc. In such conditions, noise
is very disturbing and robustness becomes an important re-
quirement for successful use of speech recognizers.

Several solutions for robustness improvement were con-
sidered. For example, spectral subtraction to improve ro-
bustness to additive noise [1, 2]; or cepstral normalization
for convolutive distortions[3, 4]. Modeling speech and noise
separately was also proposed [5, 6].

In this paper, we consider recognition over the GSM net-
work in adverse conditions. We first describe, in section 2,
the problems of speech distortions in a database collected
over such network. Then, we propose two different solu-
tions based on robust HMM architecture described in sec-
tion 3. In section 4, a detection algorithm of GSM holes is
introduced and a rejection procedure is adopted. Section 5
describes an optimal model for GSM impulsive noises based
on a Maximum likelihoodcriterion and using a combination
between the initial HMM and a mixture Gaussian modeling
the GSM noises.

2. COMMUNICATION OVER CELLULAR
NETWORKS

Communications over cellular networks have sometimes very
poor listening quality. In some environments, one can hear a
clanging voice (impulsive noise) or a sudden disappearance
of the signal (that we call “a GSMhole”). This temporary
absence of signal, may affect the beginning or the end of a
word, or even cut it into tow or more meaningless sounds.

We focus on the cellular Global System for Mobile (GSM)
network. We consider a laboratory GSM database of 51
vocabulary words [2]. Several call environments are con-
sidered: indoors (26% of the considered calls), outdoors
(22%), stopped cars (29%) and running cars (23%). In the
GSM speech signal, ambient noises are frequent (especially
in outdoor and running car calls), and the GSM transmission
effects may be very disturbing.

The database is hand segmented and labeled. Therefore,
different labels of noise and Out-Of-Vocabulary (OOV) words
were added to the initial vocabulary words. This results in
a database of 35995 segments including 64% of vocabulary
words, 7% of OOV words and 29% of noise (16 % of am-
bient noises, 9 % of GSM channel distorsion and 4 % of
remaining echoes).

3. ROBUST HMM ARCHITECTURES

It has been shown [7] that the best recognition results are
obtained when the training data condition match the real
condition data, where the system will be used. This is not
feasible in practice for telephone applications since one can
never knowa priori in which environment a recognizer will
be used.

Speech recognition performances decrease in noisy en-
vironments, typically for communications over mobile phones
used outdoor or in running cars. However, significant im-
provements could be achieved when the same environment
is considered for training and recognition.

In order to overcome this problem, various algorithms
have been proposed [8]. Since the condition in which the



system will be used is not knowna priori, we propose a
system able to choose the appropriate one between different
conditions.

The idea is to train the system using a greater number
of parameters, in order to provide precise modeling able to
take more variability intoaccount. This can be achieved by
means of multi-models or multi-transition modeling [8].

3.1. Multi-HMMs

The idea consists in combining several HMMs trained sep-
arately on different databases, related to different call en-
vironments. The global HMM has common beginning and
ending states, and can choose between the different models.

3.2. Multi-transition model

In this case, different output pdfs (probability density func-
tions) are associated to each state. Each pdf is initialized
using the corresponding pdf in a HMM trained in a given
condition. During the decoding phase, Viterbi algorithm
chooses the most likely pdf. This is practically achieved
using different transitions between two states, a condition
pdf is associated to each transition.

The whole model is then retrained on the global data. In
the recognition phase, the system is free to choose the most
suitable transition.

3.3. Experimentation

To build the different models, we use the CNET HMM-
based system (PHIL90) [9].

In our case, we distinguish two conditions :

� quiet environment including indoor or stopped car calls,

� noisy environment including outdoor or running car
calls.

Data collected in these environments are used to build
two 30-state HMMs. These HMMs are then used to initial-
ize a bi-model HMM and a bi-transition one. Training and
recognition phases are then performed using data collected
in various conditions. Figure 1 summarizes the results.

We notice an improvement with bi-transition model.
More improvement could be achieved by the combina-

tion of the two architectures above. This yields a multi-
HMMs of multi-transitions models. With this architecture,
the number of parameters is increased, the learning data in-
cludes more variability, which should increase the robust-
ness of the system. However, we did not test this system
because the high number of parameters needs much more
data than we have to achieve a correct training.
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Figure 1: Robust architectures results. Severe errors (i.e., sub-
stitution and falseacceptance errors) with the initial model, the
bi-model and the bi-transition one are plotted. The different points
of the plot are obtained by varying the weight of the garbage model
probabilities.

4. GSM HOLE REJECTION

In presence of holes or clanging noise, recognition becomes
difficult and error rates increase significantly, especially sub-
stitution errors and false rejection.

In this section we consider the GSM holes. To avoid
this problem, we developed an algorithm allowing to detect
the “holes” through the GSM communications in order to
favour their rejection during the decoding phase.

Holes detection algorithm is based on some statistical
properties of those segments of the signal. Amplitude, vari-
ance and segment length are taken into account. It has been
noticed that the corresponding segments have low amplitude
(about 5) and variance (about 3.5) compared to the segments
of silence (see figure 2).
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Figure 2: Difference between silence (left) and a GSM hole
(right).

When a hole is detected, the associated word has less
chance to be correctly recognized. Thus, we favour its re-
jection by emphasizing the garbage model probability in the
unigram used in the recognition. Hence, the substitution er-
rors and false rejection rates are decreased as shown in fig-
ure 3.
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Figure 3: GSM hole rejection. Results are obtained using the
initial model without (“baseline” curve) and with the hole re-
jection procedure. The different points of the“baseline” plot
are obtained by varying the weight of the garbage model prob-
abilities. The other points result from various sets of(hole
lenght,variance,rejection weight).

5. MULTI-GAUSSIAN DISTRIBUTION MODELING
OF GSM NOISE

In the training GSM database, noise segments were hand la-
beled so that they could be used to obtain a rejection (garbage)
model. We used Gaussian HMM models for vocabulary
words as well as for noise (rejection) tokens. In order to
avoid the very disturbing GSM noise, we will try to improve
its modeling. Usinga priori knowledge of the GSM noise,
this method aims to give a more precise model of the vocab-
ulary words. Two HMMs are combined: one for the whole
vocabulary words and the other for GSM noise. For GSM
noise modeling, we use a mixture Gaussian model allowing
to make a more precise estimation of the observation law.
Then, in a given call, the observation law is optimized using
a maximum likelihood criterion. This means that the Viterbi
algorithm has to choose between two observation laws: the
one obtained by a mixture Gaussian noise modeling and the
initial Gaussians of the HMM model.

Recall that, for a given HMM�, an observation sequence
O1; : : : ; Ot and a set ofq1; : : : ; qt possible paths to the state
si, we define the corresponding optimal path as follows:

�t(i) = max
q1;:::;qt�1

P (q1; :::; qt�1; qt = si;O1; :::; Ot=�)

The optimal path is obtained recursively using the for-
mula :

�t+1(j) = max
1�i�N

f�t(i)aijgbij(Ot+1)

whereN is the state number in the HMM,aij = P (qt+1 =
sj=qt = si) andbij(Ot+1) = p(Ot=qt = sj ; qt�1 = si).

In this case, the pdfbij results from a combination of
two possibilities:binitialij given by the initial Gaussians of
the HMM trained on the global database words, andBij

given by a Gaussian mixture HMM optimized on GSM noise
tokens. As a combination, we chose the following:

bij(Ot) = maxf(1� �)binitialij (Ot); �Bij(Ot)g

where� is a weight aiming to favour one of the combined
densities.

Let us now detail the GSM noise modeling. In prac-
tice, GSM noise is supposed to be independent of the clean
speech signal. To model it, we consider the particular case
of one state HMM with a Gaussian mixture density. The
observation law at timet is then:

B(Ot) =

NgX

k=1

ckN (Ot; �k;�k) =

NgX

k=1

ckNk(Ot)

whereck is the weight of thekth component in the mix-
ture ofNg Gaussian functions. Gaussian mixture param-
eters are optimized in the training phase using only GSM
noise hand labeled tokens. The optimization is performed
by means of the iterative EM algorithm.

This algorithmneeds an initial parameter vector. A start-
ing point is obtained by means of vector quantization of the
acoustic sub-space of the training parameter vectors. Vec-
tor quantization aims to split the whole space of parameter
vectors into a given number of classes (which is the number
of Gaussian functions in the mixture density). Vector quan-
tization is performed using the LBG (Linde, Buzo, Gray)
algorithm [10].

The initialization associateseach Gaussian to a given
class. Hence, the initial mean vector of the Gaussian num-
berk is the centroid of thekth class, and the covariance ma-
trix is computed using the observation vector of that same
kth class.

As for the weightsck, we chose a uniform repartition as
an initial weight vector:ck = 1

Ng
whereNg is the number

of Gaussian functions in the mixture.
Notice that since the GSM noise model involves only

one state, there is only one pdfB(Ot) for each observation
Ot. It is estimated as the best Gaussian function in the mix-
ture:B(Ot) = maxkfckNk(Ot)g.

Hence, the training phase consists in building this GSM
noise model. Then, in order to improve the recognition per-
formances, this model will be combined with the initial 30-
state HMM trained on the whole vocabulary, including vo-
cabulary words and noises. The one with the highest likeli-
hood is selected by the Viterbi algorithm during the decod-
ing phase.

The evaluation of this method is performed using the
classical test procedure giving recognition error rates. Sev-



eral tests were conducted varying the weight� and the Gaus-
sian functions number in the mixture density (Ng). Results
are summarized in figure 4.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

False rejection (%)

4

5

6

7

8

se
ve

re
 e

rr
or

s 
(%

)

baseline

Ng=2

Ng=4

Ng=8

Figure 4: GSM noise modeling. Results are obtained using the
initial model combined with the Gaussian mixture associated to
the GSM noise model.“baseline” curve corresponds to the initial
HHM model (without mixture). The other curves are obtained by
varying the number of Gaussians in the mixture (Ng). The differ-
ent points on each plot are associated to a weight� of the mixture
in the combination.

We notice that the best improvement is achieved with
two Gaussian functions in the mixture. For instance, for
2:1% of false rejection errors, we achieve3% decrease of
substitution error rates and8% decrease of false acceptance
error rates. However, we believe that more improvement
could be obtained using this technique with more GSM noise
tokens in the mixture training data.

6. CONCLUSION

In order to improve robustness to noise in automatic speech
recognition over cellular networks, several techniques were
described in this paper.

First, we introduced two architectures taking the envi-
ronment call into account: multi-models and multi-transition
models. Bi-transition models was shown to outperform both
of the bi-model architecture and the initial one. For in-
stance, it achieves 18% of severe error rate reduction for
a given false rejection rate (1%).

Then, we introduced two techniques more specifically
adapted to the GSM “holes” and impulsive GSM noise. Both
of them improved the recognition rates. In the second one,
the use of a Gaussian mixture provides a precise modeling
of the GSM noise without anya priori knowledge of the de-
coding procedure within the cellular network transmission
phase. This technique seems to be promising. Therefore,

further developments based on this technique are being con-
ducted in our team.
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