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ABSTRACT

This paper considers the problem of bearing estimation for a small
number of radar targets which cannot be resolved in range or
Doppler frequency. Bearing estimation for non-fluctuating tar-
gets involves a single “snapshot” resulting from a multi-channel
optimum (matched) filtering process. The standard spatial smooth-
ing technique may be applied to this single-snapshot model, but
only for uniform linear antenna arrays. Here we introduce a special
class of nonuniform geometry with embedded partial arrays and
a corresponding generalised spatial smoothing (GSS) algorithm.
The partial array characteristics determine the resulting bearing
estimation accuracy. A two-stage bearing estimation procedure
is proposed. The initialisation stage involves spatial averaging
over all suitable partial arrays. The refinement stage uses a lo-
cal maximum-likelihood search. Typical radar model simulations
and Cramér-Rao bound calculations demonstrate the efficiency of
this approach compared with standard spatial smoothing using a
uniform linear array.

1. INTRODUCTION

Despite the growing interest in arrayed sensor applications (such
as direction finding and communications), few discussions have
appeared about array geometries and corresponding signal pro-
cessing algorithms capable of resolving multiple radar targets in
bearing. This is partly due to sufficiently high Doppler frequency
and range resolution which justifies the “single target per resolu-
tion cell” model usually adopted in radar studies. Nevertheless,
some applications require spatial resolution of targets which are
unresolved in range and Doppler, eg. the resolution in elevation
angle of a sea-surface skimming object and its reflection.

In standard radar observation models, the optimum procedure
is to use multi-dimensional temporal (matched) filtering prior to
bearing estimation; this is the “single snapshot” model which has
been extensively addressed for direction-of-arrival (DOA) esti-
mation. Spatial smoothing [5] and over-determined Yule-Walker
methods [7] have been proposed as suitable techniques, at least for
the initialisation of some more sophisticated (nonlinear) maximum-
likelihood (ML) estimation procedure. Unfortunately both these
techniques are suitable only for uniform linear arrays (ULA’s).

Our motivation for introducing a modified version of the spa-
tial smoothing technique for nonuniform linear arrays (NLA’s) is
that given a fixed number of antenna elements M , sparse arrays
have longer apertures than their correspondingULA’s and therefore
have enhanced bearing estimation accuracies. Our approach is to
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design a class of NLA and simultaneously a corresponding signal
processing algorithm, which is a “generalised spatial smoothing”
(GSS) technique. We shall explore the limit bearing estimation
accuracy of this class.

2. DATA MODEL

In departing from the “single target per resolution cell” model, we
consider the case where some rather small number of targets (m�

M ) are to be spatially resolved. The problem of bearing estimation
for m targets irradiated at time t by the radar waveform s(t),
t = 1; : : : ; T , and received by a linear antenna array consisting of
M identical sensors can be reduced to estimation of the unknown
bearing parameter � = [�1; : : : ; �m]T in the equation

y(t) = A(�)x(t) s(t) + n(t) (1)

where y(t) 2 CM�1 is the vector of observed sensor outputs
at time t (the “snapshot”), A 2 CM�m is the transfer matrix,
x 2 Cm�1 is the vector of (unknown) complex target scattering
coefficients, and n is additive noise. The targets are assumed to
be non-fluctuating over the observation interval T . The classical
“Swerling 1” model [1] incorporates a Gaussian distribution for
the scattering coefficients. We assume all m targets have the same
range and Doppler frequency in order to explore the potential of
spatial-only resolution. The transfer matrix consists of the M -
variate array manifold (“steering”) vectorsA(�) =

�
a1; : : : ;am

�
,

where each column vector is

aj =
h

1; exp
�
i�d2 sin �j

�
; : : : ; exp

�
i�dM sin �j

�iT
(2)

where the array sensor positions are d = [d1 � 0; d2; : : : ; dM ]
(measured in half-wavelength units). The noise n is assumed to
have a complex Gaussian distribution with zero mean and powerp2

0,
and to be spatially uncorrelated, possibly with temporal correlation
given byB(t1; t2). This assumption reflects the typical radar model
of clutter broadly distributed in space mixed with white noise. We
also assume that the scattering coefficientsx(t) and the noisen(t)
are uncorrelated for all t.

Clearly the model of Eqn. (1) consists of the standard radar
model with fully correlated sources, as adopted in the field of
DOA estimation [7], where we have sufficient statistics. Optimum
temporal matched-filter processing is performed in all M channels
to obtain the single snapshot ~y which is then used for bearing es-
timation. Given initial bearing estimates, further refinement may
be achieved by local ML-optimisation. One possible iterative ap-
proach stems from the following interpretation of the optimum ML



algorithm obtained from the signal model with unknown powers
pj (j = 1; : : : ;m):
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where s = [s(t1); : : : ; s(T )]T . If the parameters (�k; pk), k =
1; : : : ; `�1; `+1; : : : ;m of the “interfering” targets are precisely
known, then Eqn. (3) coincides with the well-known estimation
procedure for non-white (spatial) noise with known covariance
[2]. This procedure can therefore be used in simulation studies to
define the upper bound of realistically achievable accuracy when
the true target parameters are unknown. In fact, such an upper
bound is more realistic even than the Cramér-Rao bound (CRB)
since for a single snapshot, a limited number of antenna sensors
and a finite SNR, asymptotic conditions are unlikely to be met.

When initial estimates
�
�̂
(0)
k ; p̂

(0)
k

�
, k = 1; : : : ;m are avail-

able, Eqns. (3) and (4) may be used to construct an iterative scheme
to calculate

�
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(n+1)
`

; p̂
(n+1)
`

�
using the current set of estimates:
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A one-dimensional search, or even the direct analytic expression
based on the first-order expansion, may be used to find the solution
of the ML equation (3) at each iteration [2].

3. PARTIAL ARRAYS

We define a partial array to be a group of nonuniform linear non-
contiguous sub-arrays of identical co-array structure. For example,
the NLA

deg = [0; 1; 5; 6; 9; 11; 12] (6)

has the co-array (ie. set of consecutive inter-element differences)

ceg = [1; 4; 1; 3; 2; 1] (7)

in which is embedded the partial array with co-array structure

c1 = [1; 5] (8)

since this co-array repeatedly occurs as a fixed sub-array pattern of
the original array elements as follows:

d11 = [0; 1; 6]
d12 = [5; 6; 11]
d13 = [0; 5; 6]
d14 = [6; 11; 12]:

(9)

We say that this partial array has a multiplicity (number of occur-
rences or instances) of �1 = 4. Note that the instancesd13 andd14

exist as mirror-images (the co-array order is reversed). We define
the order (`) of a partial array to be the number of co-array ele-
ments involved. This partial array has order `1 = 2, and aperture

a1 =
P`1

j=1 c1j = 6. The exhaustive list of partial arrays for the
deg geometry is

c1 = [1; 5] �1 = 4 `1 = 2 a1 = 6
c2 = [1; 4] �2 = 2 `2 = 2 a2 = 5
c3 = [1; 6] �3 = 2 `3 = 2 a3 = 7
c4 = [1; 10] �4 = 2 `4 = 2 a4 = 11
c5 = [1; 11] �5 = 2 `5 = 2 a5 = 12
c6 = [5; 6] �6 = 3 `6 = 2 a6 = 11
c7 = [1; 5; 5] �7 = 2 `7 = 3 a7 = 11
c8 = [1; 5; 6] �8 = 2 `8 = 3 a8 = 12

(10)

so that the number of embedded partial arrays is n = 8, with a
total of N =

Pn

j=1
�j = 19 instances.

The spatial smoothing idea may be applied to a NLA providing
it yields at least one partial array of multiplicity � � m and order
` � m. The effectiveness of GSS is directly related to the number,
variety and �`a-properties of the available partial arrays in the
following ways.

Firstly, we desire a NLA which contains as many partial arrays
as possible for a given M , preferably each with large � and `.
Therefore neither nonredundant nor minimum-redundancy arrays
are suitable; we need to identify a new class of NLA.

Secondly, since a partial array is nonuniform in geometry, it
admits manifold ambiguity (because a > `) [4]. Thus if only one
partial array exists, there might be situations defined by the corre-
sponding ambiguity generator sets [4] where standard MUSIC fails
to provide unambiguous bearing estimates. Since different partial
arrays have (generally) different ambiguity sets, by increasing the
number of different partial arrays we decrease the probability of a
combined ambiguous scenario.

Thirdly, recall that the main motivation for using nonuniform
arrays is to increase the resolution capability beyond the uniform
array limit. Evidently the partial arrays should have an aperture
which is as long as possible, and in any case exceeds that of the
corresponding uniform array.

These criteria have been used in a specifically designed opti-
misation procedure which begins with a nonredundant array of the
desired aperture, then adds single array elements up to the desired
number M in vacant sensor positions so as to maximise a gener-
alised criterion which encompasses these three important features.
While the details of this process appear in a separate paper [6], the
array geometry optimisation results are illustrated by the following
two examples of 16-element NLA.

A selection criterion (designed to resolve up to three targets)
which involves the number and distribution of partial array aper-
tures results in the following solution:

d55 = [0; 1; 5; 6; 8; 10; 19; 23; 26; 34; 37; 41; 44; 52; 53; 55]:
(11)

Table 1 shows the �`-distribution and Fig. 1 illustrates the a-
distribution of partial arrays for this NLA. We expect this ar-
ray to perform better than the 16-element ULA because of the
large numbers of embedded partial arrays, each of significant aper-
ture. The minimum-redundancy array of comparable total aperture
(M� = 58) has 13 elements [3], so we could consider d55 to
be a type of “optimal” solution by the introduction of only three
additional elements to the minimum-redundancy structure.

A 16-element NLA with different partial array characteristics



� = 3 � = 4 � = 5 � = 6 � = 7 � = 8 � = 9
` = 3 33 9 0 0 0 0 0
` = 4 32 3 0 0 0 0 0
` = 5 12 0 0 0 0 0 0

Table 1: Partial array distribution by multiplicity (�) and order (`)
for the NLA d55. For 1 � c � 18 there are n = 89 partial arrays
with a total of N = 279 instances available for spatial smoothing.

� = 3 � = 4 � = 5 � = 6 � = 7 � = 8 � = 9
` = 3 76 26 2 0 0 0 0
` = 4 43 0 0 0 0 0 0
` = 5 3 0 0 0 0 0 0

Table 2: Partial array distribution for the NLA d34, where n = 150
and N = 480 for 1 � c � 18.

is illustrated by the shorter array

d34 = [0; 1; 4; 5; 8; 9; 10; 14; 15; 16; 18; 22; 23; 25; 32; 34]:
(12)

Table 2 and Fig. 2 show its partial array �`a-properties. While the
maximum partial array aperture (max(a) = 24) is here less than
that of d55, the number of partial arrays is much greater. In any
case, we would expect d34 to perform better than the 16-element
ULA. Note that the 10-element optimal minimum-redundancy ar-
ray (which contains no suitable partial arrays) has a similar aperture
(M� = 36) [3], hence all N = 480 instances are created by the
addition of six antenna sensors.

Obviously the bearing estimation performance achieved should
be compared to that of a 16-element ULA. A standard spatial
smoothing technique here is to use the single partial array c =
[1; : : : ; 1] of order ` = 14, which has multiplicity � = 6 (three of
them mirror-images) and aperture a = 14.

Note that our embeddedpartial array distributions are found by
exhaustive computer search. Due to a “combinatorial explosion”,
these searches can only be conducted over a finite range of values
of ` and c (the possible value of any partial co-array element). The
partial array distributions we present here are standardised on what
is very likely to be completeness for these scenarios: 3 � ` � 5
and 1 � c � 18.

These examples illustrate a range of possible NLA trade-offs,
where apertures are maximised by redundancy minimisation and
partial array distributions are optimised by creating redundancies.

4. PARTIAL ARRAY MUSIC TECHNIQUE FOR
BEARING ESTIMATION INITIALISATION

Suppose that an NLA yields a total of N partial arrays, each of
multiplicity �i, order `i and aperture ai (i = 1; : : : ;N ). Let
yij be a (`i+1)-variate snapshot vector corresponding to the jth

instance (j = 1; : : : ; �i) of the ith partial array. If any instance of a
partial array occurs as a mirror-image (ie. in reverse order), then the
corresponding snapshot vector is observed by reversing the order
of antenna samples and taking the complex conjugate of the vector.
Thus for each partial array we may define the (`i+1)� (`i+1)
partial array covariance matrix by spatial smoothing to be

R̂i =

�iX
j=1

yij y
H
ij : (13)
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Figure 1: Aperture histogram of partial arrays embedded in d55.
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Figure 2: Aperture histogram of partial arrays embedded in d34.

Let Ĝi be the noise eigen-subspace of R̂i , then Ĝi consists of at
least one eigenvector (since m� M ).

We may now introduce the PA-MUSIC technique as follows:

find max
�

fPA(�) := min
�

NX
i=1

aHi (�) Ĝi Ĝ
H
i ai(�) (14)

where ai(�) is the (`i+1)-variate manifold vector which corre-
sponds to the given partial array geometry. Evidently this approach
eliminates non-coinciding ambiguities.

5. RESULTS OF NUMERICAL SIMULATIONS

The GSS procedure consists of an initialisation step followed by
local ML refinement. The initialisation step is based on the PA-
MUSIC approach involving all appropriate partial arrays. In order
to demonstrate the trade-off between array aperture and number of
partial array instances involved in spatial averaging (N ), the same
three-target scenario is tested for bearing estimation accuracy by
the three different arrays d15 (the 16-element ULA), d34 and d55.
Summary statistics for these arrays are as follows:

median(a15) = 14; n15 = 1; N15 = 6
median(a34) = 17; n34 = 150; N34 = 480
median(a55) = 32; n55 = 89; N55 = 279

(15)

The signal-to-noise ratio is equal for all three targets. The Cramer-
Rao bound is calculated for each scenario, though it is not ex-
pected to be a very tight bound in these cases, as we have men-
tioned. Hence we supplement each trial by simulation of the exact
ML procedure of Eqns. (3) and (4) with the exact parameters (�i,
pi) for the two other “interfering” targets. Each experiment con-
sists of 500 independent Monte-Carlo trials simulating indepen-
dent realisations of single-snapshot stochastic data, whose princi-
pal results are the mean relative error (bias) and root-mean-square
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Figure 3: (a) Abnormal trial probability as a function of SNR for
various NLA geometries, (b) maximum refined bearing estimation
accuracy (excluding abnormal trials), (c) maximum Cramér-Rao
bound and maximum exact ML total error.

error (standard deviation) for the estimated bearings. The PA-
MUSIC routine operates on a spatial frequency grid with spacing
�w = 4:88�10�4, while the ML refinementalgorithm was imple-
mented on an eight times finer grid. (We measure spatial frequency
in terms of w = sin �.)

Since the main purpose of the PA-MUSIC step is initialisation
for ML-refinement, in addition to the bias and standard deviation
its performance is measured by the percentageof “abnormal” trials.
An abnormal trial occurs when PA-MUSIC fails to properly resolve
close targets and selects a completely inappropriate peak in the
MUSIC pseudo-spectrum. The mechanism for such failures is
well known.

In accordance with the main idea of our approach, we investi-
gate several different super-resolution situations where the spatial
frequencies of the m = 3 sources are set at w = [�0:5; 0; 0:05].

Fig. 3(a) presents the sample probability of abnormal trials
(failed target resolution) as a function of SNR for all three ge-
ometries. By the conventional beamwidth resolution limit formula
wCBF = 2=a, almost all partial arrays under consideration have a
beamwidth greater than the source separation � = 0:05;d55 is the
only geometry that has any partial arrays with aperture exceeding
acrit = 2=� ' 40. Hence it is not surprising that for this close-
source separation, all arrays have a high probability of abnormals,
especially at low SNR’s, but that d55 is the best initialiser. Indeed
the probability of correct initialisation is, as we expect, directly re-
lated to the partial array aperture distribution, withd15 performing
the worst.

Fig. 3(b) shows the maximum refined total error (excluding
abnormal trials) resulting from PA-MUSIC plus local ML refine-
ment. We see that d55 is more accurate than d34, which in turn is
more accurate than d15. Here the PA-MUSIC accuracy over the
set of normal trials is in direct relation to the length of partial array

apertures, rather than the number of them. These final accuracy
results repeat the same behaviour as for the unrefined results.

Finally, it is interesting to compare the final GSS accuracy with
the corresponding Cramer-Rao boundsand the exactML total error
of Eqns. (3) and (4) obtained during simulation (Fig. 3(c)). We see
that in general the ML bound is significantly larger than the CRB.
As was discussed previously, the CRB is not a tight enough bound
in this pre-asymptotic scenario. We also see that the difference
between the actual final accuracy achieved by GSS on d55 and the
exact ML bound is almost negligible.

6. SUMMARY

We have introduced a new approach for bearing estimation of
multiple radar targets which are unresolved in range and in Doppler
frequency, where the number of such targets is much smaller than
the number of antenna sensors. This applies to the single snapshot
signal model, and in fact in all cases of rank-1 signal covariance, as
in the case of coherent signals. This approach involves the design of
nonuniform linear array geometries and the corresponding design
of a suitable signal processing algorithm, which we have called the
generalised spatial smoothing (GSS) algorithm.

This definesa special class of NLA which incorporates a trade-
off between the maximum array aperture that can be achieved with
a particular number of sensors, and the maximum number and
quality of “partial arrays” (groups of noncontiguous sub-arrays of
identical co-array structure) necessary for spatial averaging.

The associated bearing estimation algorithm consists of two
stages. Firstly, the initialisation stage adopts spatial smoothing
over all available suitable partial arrays to form sample covariance
matrices and apply MUSIC-type techniques. Secondly, the refine-
ment of bearing estimates takes place via a local one-dimensional
maximum-likelihood iterative optimisation.

For the situations examined here with successful initialisation,
a practically optimal final bearing estimation accuracy is demon-
strated, one which is significantly superior to the conventional ULA
geometry complemented by standard spatial smoothing algorithm.
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