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ABSTRACT

Array calibration algorithms for over-the-horizon (OTH) radar ar-
rays have been recently proposed in the literature. These algo-
rithms perform array calibration by using echoes from ionised
meteor trails, and estimate sensor position errors and mutual cou-
pling. In this paper we derive the Cramer-Rao performance bound
for this array calibration problem and then investigate the perfor-
mance bound. We obtain insight on the achievable accuracy as
a function of the signal-to-noise ratio, number of snapshots and
number of sources. Further, we consider the advantage of using
sources with known bearings, as opposed to unknown bearings,
and consider the identifiability of the array calibration problem.

1. INTRODUCTION

Array calibration algorithms for over-the-horizon (OTH) radar ar-
rays have been proposed in [10] [11]. These algorithms estimate the
sensor position errors and mutual coupling, using external sources.
Array calibration in [10] is performed by exploiting echoes from
ionised meteor trails, while in [11] a variety of sources (including
echoes from ionised meteor trails) are used for calibrating the radar
array.

In practice the important case is where only disjoint echoes
from ionised meteor trails are used, in either [10] or [11], since
these sources have very attractive properties from an array cali-
bration perspective [12]. By disjoint we mean the echoes do not
occupy both the same time snapshots and the same radar range
cells. In this paper we obtain insight into this important practical
case by analysing the Cramer Rao lower bound (CRLB). The ar-
ray calibration problem can only be solved when the CRLB exist,
hence the existence of the CRLB addresses the question of identifi-
ability. Further, since the CRLB gives the minimum variance that
an unbiased estimator can obtain, it gives the accuracy attainable
under given scenarios.

The CRLB for array calibration has been considered in [8] [14]
[2] [1] [6] [7] [9]. Only [8] and [7] considermultiple sources which
are either temporally or spatially disjoint. In [8] only sensor posi-
tions are considered, and prior statistics are used in the derivation
of the CRLB. In [7] the source directions-of-arrival (DOAs) are
assumed known a priori and the coupling matrix is unstructured.
Here we determine the CRLB for disjoint sources where the sen-
sor positions, symmetric coupling matrix, and source DOAs are
unknown.

2. PROBLEM FORMULATION

For a narrowband single-mode signal impinging an M element
array, in the absence of mutual coupling, the output of the mth
sensor is

zm1(t) = (1 + �m)e�j�m s1(t)e
�jw�m1 + nm(t) (1)

where�m &�m are the receiver gain and phase errors, s1(t) is the
received signal, and nm(t) is additive receiver noise. The radar
operating frequency is w, �mn = (xm sin �n + ym cos �n)=v, xm
& ym define the position of the mth sensor, �1 is the DOA of the
signal (with respect to broadside), and v is the speed of light in free
space.

The vector of M sensor outputs, from the array, is

z1(t) = �a(�1)s1(t) + n(t) (2)

where z1(t) = [z11(t); z21(t); ::::; zM1(t)]
T ,

� = diagf(1 + �1)e
�j�1 ; :::; (1 + �M)e�j�M g,

a(�n) = [e�jw�1n ; e�jw�2n ; :::; e�jw�Mn ]T ,
n(t) = [n1(t);n2(t); ::::;nM(t)]T .
In the presence of mutual coupling [3]

z1(t) =C�a(�1)s1(t) +n(t) (3)

where C = (IM + ZO=ZL)
�1 is called the coupling matrix.

Matrix IM is the MxM identity matrix, ZO is the array mutual
coupling matrix, andZL is the scalar load impedance. The covari-
ance matrix for this signal, assuming zero mean noise, is

R1 = Efz1(t)z1(t)
Hg (4)

Now considerN disjoint echoes. Most meteor trail echoes we
have observed are resolvable in time and range, indicating different
underlying physical mechanisms, and hence we represent these as
statistically disjoint sources [12]. The covariance matrix for the
nth disjoint echo

Rn = Efzn(t)zn(t)
Hg (5)

where zn(t) is the vector of M sensor outputs for the nth disjoint
echo.

The problem is then to estimate the sensor positions and cou-
pling matrix, given the N covariance matrices. We have as-
sumed here that the data zn(t) have been corrected for the receiver
gain/phase errors, using internal calibration.



Note, the algorithm in [10] is based on minimising the cost
function

Q =

NX
n=1

kU(n)HCa(�n)k
2

(6)

where U(n) is the matrix whose columns are the eigenvectors of
Rn which correspond to the noise eigenvalues ofRn, andN is the
number of disjoint echoes. The algorithm in [11], for this special
case of disjoint echoes, is based on minimising

Q =

NX
n=1

ken �Ca(�n)snk
2 (7)

where en is the eigenvector corresponding to the signal eigenvalue
(principal eigenvector) ofRn and sn is a complex scalar.

3. CRAMER RAO LOWER BOUND

The likelihood function for the complete data set fzn(t), t =
1; 2; :::; T & n = 1; 2; :::Ng is given by

p[z(1);z(2); :::;z(T )=	] =

TY
t=1

1
�MkRk

exp(�z(t)HR�1z(t))

(8)
where z(t) = [z1(t)

T ;z2(t)
T ; :::;zN (t)T ]T , 	 = [�;x;y;C]

and the MNxMN matrix R is

R =

2
664

R1 0 � � � 0
0 R2 � � � 0
...

...
...

...
0 0 � � � RN

3
775 (9)

where the exact covariance matrix of the nth echo/source isRn =
�2
sCa(�n)a(�n)

HCH +�2
nIM , assuming all echoes have signal-

to-noise ratio (SNR) = �2
s=�

2
n. The unconditional CRLB [13] is

then
CRLB(	) = [Jkl]

�1 (10)

where the elements of the symmetric Fisher Information Matrix
(FIM) are

Jkl = Jlk = TtrfR�1@R=@	kR
�1@R=@	l g (11)

where trfg is the trace operator. SinceR,R�1, @R=@	k are all
block structured matrices

Jkl = T

NX
n=1

trfR�1
n @Rn=@	kR

�1
n @Rn=@	lg (12)

The elements of the FIM are now given (see [10] for the details).
Since we have disjoint sources, @Rn=@�l is a zero matrix for

n 6= l, and hence J�k;�l is zero for k 6= l. Now

J�k;�k = 2T�s
4<ftrfR�1

k C_a�k (�k)a(�k)
HCHR�1

k C

( _a�k(�k)a(�k)
H + a(�k) _a�k(�k)

H)CHgg (13)

where _a�k(�k) = @a(�k)=@�k = D(�k)a(�k) (with D(�k) =
(�2�j=�)diagfx cos(�k)�y sin(�k)g), and<fg is the real part.

Jxk ;xl = 2T�s
4

NX
n=1

<ftrfR�1
n C_axk (�n)a(�n)

HCHR�1
n

C( _axl (�n)a(�n)
H + a(�n) _axl (�n)

H)CHgg (14)

where _axk(�n) = @a(�n)=@xk = dxk�a(�n),� is the Hadamard
product, and dxk is an M element row vector with all but the kth
element zero; the kth element is (�2�j=�) sin(�n), where � is the
radar wavelength. Similarly for the y coordinate and x-y coordi-
nate terms.

Jck;cl = 2T�s
4

NX
n=1

<ftrfR�1
n
_Ccka(�n)a(�n)

HCHR�1
n

( _Ccla(�n)a(�n)
HCH+Ca(�n)a(�n)

H _CH
cl
)gg (15)

where matrix _Cck = @C=@ck , ck being the amplitude/phase of
an element in the symmetric coupling matrix.

J�k;xl =T�s
4trfR�1

k C( _a�k(�k)a(�k)
H +

a(�k) _a�k(�k)
H)CHR�1

k C

( _axl (�k)a(�k)
H + a(�k) _axl(�k)

H)CHg (16)

J�k;cl =T�s
4trfR�1

k C( _a�k(�k)a(�k)
H +

a(�k) _a�k(�k)
H)CHR�1

k

( _Ccla(�k)a(�k)
HCH+Ca(�k)a(�k)

H _CH
cl
)g (17)

Jck;xl =T�s
4

NX
n=1

trfR�1
n ( _Ccka(�n)a(�n)

HCH +

Ca(�n)a(�n)
H _CH

ck
)R�1

n C

( _axl (�n)a(�n)
H + a(�n) _axl (�n)

H)CHg (18)

4. PERFORMANCE EVALUATION

We studied the performance for a nominal uniform linear 4-element
array, with inter-element spacing of d = 0:4�. The randomly gen-
erated sensor position errors in the x-coordinate (along the array)
and y-coordinate (perpendicular to array) are given in Table 1. The
coupling matrix we employed was experimentally measured from
the Jindalee OTH radar transmitter array [5]. Unless specified
otherwise, 10 sources equally spaced from 0 to 180 degrees in az-
imuth, each with SNR of 30dB and 500 snapshots were considered
(as considered in [10]).

Sensor 1 2 3 4
y-coordinate -0.1149 0.0674 0.0011 -0.0361
x-coordinate -0.0499 0.0130 0.0156 -0.0162

Table 1: Position Errors (�)

Since in [10] [11] it is assumed that the location of one sen-
sor and the direction to another sensor is known there are only 5
sensor position parameters (2M � 3) which are unknown. For
the coupling parameters, since we assumed a symmetric coupling
matrix and place the constraint that c11 = 1, 18 coupling values
(M(M + 1) � 2) are unknown. Finally since all DOAs are un-
known, for 10 sources 10 DOAs (N) are unknown. The total
number of unknown parameters is then 33 (the noise power is
assumed to be known).

Figure 1 shows the CRLB for the estimation of the third sen-
sor’s y-coordinate (�) and x-coordinate (��), and the coupling
value c12’s amplitude (�:�) and phase (:::). The standard devia-
tion (STD) variation with SNR, for a range of meteor echo SNR’s,



are shown for 500 snapshots (the STD values for 10 snapshots are
simply 50 times larger). Note the STD values for the sensor posi-
tions are in units of wavelengths, while the coupling value phase
is in units of radians. The monotonically decreasing STD values
with SNR indicates the problem is well defined. The STD values
indicate that good array calibration accuracy can be achieved for
10 echoes with their typical 20-30dB SNR and typical number of
snapshots (5-15). As expected, the calibration accuracy achiev-
able for the third sensor’s x-coordinate and y-coordinate position
are similar.

The STD variation with number of snapshotsis shown in figure
2. While the number of snapshots for meteor echoes is typically
less than about 15-20, the behaviour for higher values gives useful
insight. The variation observed is in accordance with the 1/T fall
off expected, and indicates that if one can obtain more snapshots
from meteor echoes, the performance can be improved. Note we
expect each meteor echo snapshot to be independent, even though
meteors are passivesources, since the scattering process is a rapidly
time-varying process [4].

Figure 3 shows the STD variation with number of sources.
The performance attainable increases rapidly initially and then
improves more gradually. The FIM was non-invertible, and hence
the problem non-identifiable, for less than four sources. One can
conclude from this figure that the more sources one can use for
array calibration the greater the achievable accuracy. However,
since the curves start to flatten off for high number of sources, the
improvement obtained by adding further sources becomes minimal.

It has been mentioned in [6] that better array calibration accu-
racy can be obtained by using “Active Array Calibration” (special
sources with known DOAs) as compared with “Passive Array Cal-
ibration” (sources of opportunity with unknown DOAs). Figure 4
shows the CRLB of the third sensor’s y-coordinate, for the standard
case (�) together with some important special cases. The dashed
curve (��) shows the performance achievable if the source DOAs
are known a priori. The improvement for sensor position estima-
tion is a factor of about 2.5-3, while for the coupling amplitude
and phase (not shown) the improvement is a factor of about 10.
Hence Active Array Calibration does perform better, but clearly
the difference can be offset by the use of sources with higher SNR
and number of snapshots (and to some extent by using a larger
number of sources).

Also shown in figure 4 is the CRLB for the case where other
combinations of parameters are known a priori. For sensor posi-
tion estimation, knowing the coupling values a priori (:::) gives
slightly better results than knowing the DOAs (��), while as ex-
pected knowing both the coupling and DOAs a priori (�:�) gives
even better performance. For the estimation of c12’s amplitude
(not shown), the difference in performance between the three cases
is small, with the best accuracy obtained with both known DOAs
and sensor positions (as expected). In the case of c12’s phase (not
shown), knowing the sensor positions a priori is better than know-
ing the DOAs a priori, and again knowing both a priori achieves
the best results.

Ionised meteor trails are formed when meteoriods enter the
earths atmosphere and are at altitudes of about 100km. Hence,
meteor trail echoes reach OTH radar arrays from heights of about
100km. Until now we have assumed that the sources are at zero
elevation, but now we investigate how array calibration perfor-
mance is effected by the elevation angle of meteor echoes. Figure
5 shows the achievable accuracy as a function of the range of the
meteor echoes; the closer the sources are from the radar the higher

elevation angle. The results clearly show that calibration accu-
racy is seriously effected for echoes from ranges less than about
100km, with the accuracy being independent of range for echoes
from ranges greater than about 200km. For simplicity we have ig-
nored the drop off in antenna gain with elevation and the decrease
in meteor echo intensity with range.

We have observed that as the azimuth spread over which the
sources exist increases, the performance attainable increases. It
should be mentioned that even though we consider a linear array,
once sensor position errors are introduced the array is no longer
linear, and hence improvement in performance is expected when
the source spread is above 180 degrees too (as we have observed).

5. CONCLUSION

The CRLB, for the problem of OTH radar array calibration us-
ing meteor trails echoes, has been presented. Simulations have
been used to illustrate how the bound decreases with SNR, number
of snapshots and number of sources. For a 4-element array con-
sidered, the array calibration problem was non-identifiable when
less than four sources were used. “Active Array Calibration” was
shown to produce better accuracy than “Passive Array Calibra-
tion”, at the cost of requiring special sources. The influence of the
elevation angle of meteor echoes on array calibration accuracy was
also outlined.

6. REFERENCES

[1] Friedlander B. and Weiss A. J., “Direction finding in the
presence of mutual coupling”, IEEE Trans. on Antennas and
Propagation, Vol. 39, pp. 273-284, March 1991.

[2] Gray D. A. and Riley J. L., “Maximum likelihood estimate
and Cramer-Rao bound for a complex signal vector”, in Proc.
International Symposium on Signal Processing and its Appli-
cations, Gold Coast, Australia, 1990, pp. 352-355.

[3] Gupta I. J. and Ksienski A. A., “Effect of mutual coupling on
the performance of adaptive arrays”,IEEE Trans. on Antennas
and Propagation, Vol. 31, pp 785-791, September 1983.

[4] McKinley D. W. R., “Meteor Science and Engineering”,
McGraw-Hill Book Company, Inc., 1961.

[5] Netherway D. J. and Carson C. T., “Impedance and Scatter-
ing Matrices of a Wideband HF Phased Array’, Journal of
Electrical and Electronics Engineering, Vol. 6, No. 1, pp.
29-39, 1986.

[6] Ng B. C. and Nehorai A., “Active array sensor localization”,
Signal Processing, Vol. 44, pp. 309-327, 1995.

[7] Ng B. C. and See C. M. S., “Sensor-array calibration using
a maximum-likelihood approach”, IEEE Trans. on Antennas
and Propagation, Vol. 44, pp. 827-835, June 1996.

[8] Rockah Y. and Schultheiss P. M., “Array shape calibration us-
ing sources in unknown locations - Part I : far-field sources”,
IEEE Trans. on Acoustics Speech and Signal Processing,Vol.
35, pp. 286-299, March 1987.

[9] Smith J. J., Leung Y. H. and Cantoni A., “The partitioned
eigenvector method for towed array shape estimation”, IEEE
Trans. on Signal Processing, Vol. 44, No. 9, pp. 2273-2283,
September 1996.

[10] Solomon I. S. D., Gray D. A., Abramovich Yu. I. and An-
derson S. J., “Over-the-horizon radar array calibration using
echoes from ionised meteor trails”, submitted to IEE Pro-
ceedings - Radar, Sonar and Navigation.



0 5 10 15 20 25 30 35
10

−4

10
−3

10
−2

10
−1

SNR (dB)

S
ta

nd
ar

d 
D

ev
ia

tio
n
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(�) and x-coordinate (��), and c12’s amplitude (�:�) and phase
(:::).
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(�:�) and phase (:::).
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Figure 3: CRLB variation with number of sources : third sen-
sor’s y-coordinate (�) and x-coordinate (��), and c12’s amplitude
(�:�) and phase (:::).
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Figure 4: CRLB variation with SNR for the third sensor’s y-
coordinate : (a) DOAs and coupling values unknown (�); (b)
DOAs known but coupling values unknown (��); (c) DOAs un-
known but coupling values known (:::); (d) DOAs and coupling
values known (�:�).
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Figure 5: CRLB variation with range, for the third sensor’s y-
coordinate, when the elevation angle of meteor trail echoes is
considered.


