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ABSTRACT
A new MRNN-based method for continuous Mandarin speech
recognition is proposed. The system uses five RNNs to
accomplish many subtasks separately and then combine them to
integrally solve the problem. They include two RNNs for the
discriminations of the two sub-syllable groups of 100 RFD initials
and 39 CI finals, two RNNs for the generations of dynamic
weighting functions for sub-syllable’s integration, and one RNN
for syllable boundary detection. All RNN modules are combined
using a delay-decision Viterbi search. The method differs from the
ANN/HMM hybrid approach on using ANNs to perform not only
sub-syllables discrimination but also temporal structure modeling
of speech signal. The system is trained using a three-stage training
method embedding with the MCE/GPD algorithms. Besides, fast
recognition method using multi-level pruning is also proposed.
Experimental results showed that it outperforms the HMM method
on both the recognition accuracy and the computational
complexity.   

1. INTRODUCTION

Recently, hybrid ANN/HMM speech recognition have become an
attractive research topic because it integrates the advantages of
artificial neural networks and hidden Markov models. One
popular approach is to replace the mixture Gaussian observation
probability functions of conventional HMM models with non-
parametric ANN pattern classifiers to take advantage of high
discrimination capability of ANN resulted from competitive
training. The modeling of temporal structure of speech signal is
still performed implicitly under the HMM framework [1,2].

Although this approach is effective, there is still some room for
performance improvement. In this approach, ANN acts simply as a
non-parametric approximator of state emission probability
function and usually trained with a criterion to maximize the
classification accuracy of the phoneme classes. But, this does not
consistently comply with the final goal of speech recognition to
maximize the word or sentence recognition accuracy [3,4].
Moreover, the ANN outputs are often not directly used in HMMs
as likelihood functions. They need to be scaled according to a
priori  probabilities [1,2]. But, this scaling operation has no
appropriate interpretations to explain the role it takes in the final
goal of minimizing the word/sentence error rate. So, it is
potentially risky and may lead to a reduction of the word/sentence
recognition rate. Another major weakness of the ANN/HMM
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hybrid method is that the ability of ANN is not fully utilized. For
instances, it does not use a  priori domain knowledge in ANN’s
architecture design to improve the word/sentence recognition
accuracy. It also does not use ANN in the modeling of the
temporal structure of speech signal to provide useful cues for
further improving the recognition performance.

In this paper, a modular recurrent neural network (MRNN)
method for the recognition of continuous Mandarin speech is
proposed. It uses an MRNN containing several RNN modules to
conquer subtasks separately and then combine them to integrally
solve the complicated task of continuous Mandarin syllable
recognition. It differs from the conventional ANN/HMM hybrid
approach on adopting a pure ANN approach to perform not only
the task of phonemes or sub-syllables discrimination but also the
task of temporal structure modeling of speech signal. Besides, it
incorporates a novel multi-level pruning method into the Viterbi
search to speed up the recognition process. So it is an effective and
efficient method.

The organization of this paper is stated as follows. Section 2
presents the proposed method. A three-stage training method,
embedding with sub-syllable-, syllable-, and string-level
MCE/GPD algorithms, and the multi-level pruning method are
also discussed. Experiments for examining the performance of the
proposed method are described in Section 3. Some conclusions
are given in the last section.

2. THE PROPOSED MRNN SYSTEM

2.1 The MRNN Architecture

Figure 1 shows a block diagram of the proposed MRNN
recognizer. It adopts the “divide and conquer” principle to
decompose the complicated task of continuous Mandarin syllable
recognition, in both spatial and temporal domains, into several
subtasks. Specifically, the task is first divided into two subtasks
involving speech segmentation and base-syllable discrimination.
The former is to segment the input speech by classifying each
input frame into two classes of syllable boundary and non-syllable
boundary and is  accomplished by a segmentation RNN. The latter
is to discriminate 411 base-syllables and is further decomposed
into four subtasks including two to discriminate the two sets of
100 right-final-dependent (RFD) initials and 39 context-
independent (CI) finals, and  two to generate appropriate dynamic
weighting functions. Each of these four subtasks is accomplished
by an RNN. A delay-decision, frame-synchronized Viterbi search
algorithm is lastly used to integrate all subtasks to find out the best
recognized base-syllable sequence. In the following, we discuss



the functions of the final RNN modules and the Viterbi search in
more detail.

The base-syllable discrimination sub-MRNN is composed of 4
RNNs: initial  RNN, final RNN, primary weighting RNN and
secondary weighting RNN. The functions of initial  and final
RNNs are to generate discriminant functions respectively for the
two sub-syllable groups of 100 RFD initials and 39 CI finals. The
primary weighting RNN generates 3 primary dynamic weighting
functions respectively for silence and the two groups of  100 RFD
initials and 39 CI finals. The secondary weighting RNN generates
9 additional secondary dynamic weighting functions for the 9
initial sub-groups which partition the set of  100 RFD initials
according to the manner of articulation. All these dynamic
weighting functions are used to combine the discriminant
functions generated by the initial  and final RNNs to form
discriminant functions for the entire set of 411 base-syllables. We
note that the silence discriminant function is generated directly by
the primary weighting RNN.

The segmentation RNN explicitly models the temporal structure of
speech signal by detecting all possible syllable boundaries directly
from acoustic features. It generates two dynamic transition
weighting functions for syllable-boundary and  non-syllable-
boundary. These dynamic transition weighting functions are used
to combine the base-syllable and silence discriminant-functions to
form complete discriminant-functions for base-syllable sequence

hypotheses ( )è Ù Ô ¼Λ . Here Ù is the input utterance, Ô  is a

possible base-syllable sequence, and Λ  is the model parameters.
The final goal is to find out the best base-syllable sequence
ÿ
Ô among all possible ones. The decision rule is defined as

( ) ( ) ( ) ( ) ( )[ ]ÿ
âóèîâù  ¼Ô è Ù Ô ôúííâãíæ õ õóâïôêõêðï õ

Ô
ò õ ò õ

õ

Í

ôúí õóâïô

= = +
=

−

∑Λ
±

²

where

( )( )
( ) ( )( ) ( )( ) ( ) ( )( )

( )
( ) ( )

ôúííâãíæ õ

Ø õ Ø õ Ð õ Ø õ Ð õ

ò õ

Ø õ ò

ò õ

Ê ò õ

è

ò õ

Ê

Ç ò õ

Ç

ôúí

Ô ôúí

ôúí

è Ê Ç

=

⋅ ⋅ + ⋅








êç êô â ôúííâãíæ

êç õ êô â ôêíæïäæ

is the base-syllable discriminant function;

( )( ) ( ) ( )
( ) ( )

õóâïôêõêðï õ
Ð õ ò õ

Ð õ ò
ò õ

Ã

Ôæè

õóâïô

Ï

Ôæè

õóâïô

õóâïô

=






êç êô â ôúííâãíæ®ãðöïåâóú

êç õ êô â ïðï®ôúííâãíæ®ãðöïåâóú

is the dynamic transition weighting function generated by the
segmentation RNN;Í is the length of the input utterance;
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initial,  and final corresponding to ( )ò õôúí . We note that the two

transition weighting functions, ( )Ð õÃ
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the segmentation RNN, are dynamic functions so that they can
provide precise syllable boundary cues to help the modeling of
temporal structure of speech signal. They are hence completely
different from the static state transition probability â

êë
 used in the

HMM method.

In the recognition, a delay-decision Viterbi search is used to find
out the best base-syllable sequence. It represents each base-
syllable by a single state, and retains several delayed cumulative
scores for it in the recognition search. The delay-decision is

introduced to conquer the effect of finite pulse duration of ( )Ð õÃ

Ôæè

and ( )Ð õÏ

Ôæè  when using it in the calculation of ( )è Ù Ô ¼Λ .

2.2 The Three-Stage MCE/GPD Training
method

To efficiently train the MRNN speech recognizer, a special three-
stage training method embedding with sub-syllable-, syllable- and
string-level MCE/GPD algorithms [5] is used. It first separately
trains the initial RNN, the final RNN using the sub-syllable-level
MCE/GPD algorithm, and trains the primary and secondary
weighting RNNs using the error back-propagation (EBP)
algorithm in the first training stage. These 4 RNNs are then
combined together in the second training stage to form the base-
syllable sub-MRNN and fine-tuned by the syllable-level
MCE/GPD algorithm. In the third training stage, the segmentation
RNN is first independently trained and then integrated with the
base-syllable discrimination sub-MRNN to form the MRNN
recognizer. The whole MRNN system is then further fine-tuned by
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Figure 1. The  block diagram of the proposed system.



the string-level MCE/GPD algorithm. In the following, the three
training stages are discussed in more detail.

Before the training, all training utterances are segmented into
initial , final, and silence segments in advance. Segmentation is
realized by using an HMM-based method to find out all
initial /final/silence boundaries. Then, each initial /final boundary
is relaxed a little bit to let the two neighboring initial  and final
segments overlap by several frames. The initial  and final RNNs
are then separately trained using the corresponding initial  and
final segments by the sub-syllable-level MCE/GPD algorithm.
And, the two weighting RNNs are trained independently by the
EBP algorithm to generate appropriate dynamic weighting
functions for the two groups of initial  and final, silence, and 9
initial  sub-groups. Here, “± ²− ” output target functions
determined according to the segmentation results are used for all
12 dynamic weighting functions. It is worth noting that the intra-
syllable coarticulation effect can be partially compensated by
using overlapping initial  and final segments to train the four
RNNs.

In the second training stage, the four pre-trained RNNs are
combined to form a base-syllable discrimination sub-MRNN and
then fine-tuned using a “bootstrapping” procedure embedding
with a syllable-level MCE/GPD algorithm. In the bootstrap fine-
tuning procedure, the four RNNs of the base-syllable
discrimination MRNN are divided into 2 parts and retrained part-
by-part.

In the third training stage, the segmentation RNN is first trained
independently by an EBP algorithm to generate appropriate
dynamic transition weighting functions and then combined with
the base-syllable discrimination sub-MRNN. The whole MRNN is
then fine-tuned by a string-level MCE/GPD algorithm to adjust all
constituent RNNs at the same time. In the string-level MCE/GPD
training algorithm , the misclassification measure [5] is defined as
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We note that the “± ²− ” bounds of secondary dynamic weighting
functions, set as learning targets in the first-stage training, are
relaxed and freed of any manual control in the second- and third-
stage trainings. The ultimate level that a secondary dynamic
weighting function can reach is determined automatically by the
syllable- and string-level MCE/GPD algorithms. We also note that
the “± ²− ” bounds of primary dynamic weighting functions and
dynamic transition weighting functions are also relaxed in the
third-stage training. The ultimate levels that these dynamic
functions can reach are automatically adjusted by the string-level
MCE/GPD algorithm. The discrimination capacity of the base-
syllable sub-MRNN can hence be increased via placing special
emphases on the most distinguishing parts of the input test
utterance for each candidate syllable.

2.3 The Multi-Level Pruning Method

To speed up the recognition process, a novel multi-level pruning
method to be incorporated into the Viterbi search is proposed. It
uses some useful acoustic cues provided by  the final RNN
modules to prune many unnecessary path searches with very small
extra efforts. It is a combination of the following three pruning
schemes: syllable deactivation, pre-classification based pruning
and pre-segmentation based pruning. The syllable deactivation
scheme uses an idea similar to the phone deactivation method to
eliminate the recognition searches for all paths containing unlikely
base-syllables with very low base-syllable discrimination function
scores. The pre-classification based pruning scheme uses the idea
of setting more restrict searching constraints for the stable parts of
the input speech signal to eliminate unnecessary path searches.
The pre-segmentation based pruning scheme uses a similar idea to
set more restrict syllable transition/non-transition constraints for
syllable-boundary and non-syllable-boundary parts of the input
speech to eliminate unnecessary syllable transition/non-transition
tests in the recognition search. We discuss the latter two schemes
in more detail as follows.

As mentioned previously, the primary weighting RNN generates
three outputs to discriminate each input frame among the three
classes of silence, initial , and final. The pre-classification based
pruning scheme uses these three outputs to drive a pre-
classification FSM to classify and label the frame into four stable
states of silence (S), initial  (I ), medial (M) and final (F), and one
transient (T) state. Specifically, the pre-classification FSM
compares the three outputs of the primary weighting RNN with
two threshold values, ÕÉ Í

 and ÕÉ É
. While one (initial, final ,

or silence) output is higher than ÕÉ
É

 and the other two are all

lower than ÕÉ
Í

, the FSM moves into the corresponding stable (I,

F, or S) state if it is a legal one. When both initial and final outputs
are higher than ÕÉ

É
 and the silence output is lower than ÕÉ

Í
,

the FSM moves into the M state. Otherwise, it goes to the T state.
Similarly, the pre-segmentation based pruning scheme uses a pre-
segmentation FSM driven by the two outputs of the segmentation
RNN to classify and label each input frames into two certain states
of syllable-boundary (B) and non-syllable-boundary (N) and one
uncertain (U) state.

We then use the output labels of these two FSMs to explicitly
model the temporal structure of the input speech signal and prune
unnecessary search paths so as to speed up the recognition
process. Specifically, when an input frame is labeled as an I  or M
(M or F) state, the delay-decision Viterbi search only allows the
frame to stay in the beginning (ending) states of all base-syllables.
As an input frame is labeled as a S state, we let it to stay in silence.
When an input frame is labeled as a B (N) state, the search is
allowed (not allowed) to jump into or leave a base-syllable state.
For T and U states, a full search is performed. It is worth to note
that, from the viewpoint of the DP search, the resulting path
constraining scheme is a partial-hard-decision-and-partial-soft-
decision one [6].



3. SIMULATIONS

Effectiveness of the proposed method was examined by
simulations using a continuous Mandarin speech database uttered
by a single male speaker. The database contains in total 35,231
syllables including 28,197 training syllables (1933 sentences) and
7034 testing syllables (544 sentences). All speech signals were
A/D converted at a rate of 10 kHz and then pre-emphasized with a

digital filter, ² ± º¶ ²− −¯ û . It is then analyzed to extract recognition
features for each 20-ms Hamming-windowed frame with 10-ms
frame shift. The recognition features include 12 MFCC, 12 delta
MFCC, and a delta-energy. All RNNs used in our simulation have
the same 3-layer, simple recurrent structure with all outputs of the
hidden layer being fed back to itself as additional inputs. The
length of input window is 7 frames for the segmentation RNN and
is 5 frames for the other four RNNs. All output-layer nodes in each
RNN use linear output functions rather than the more commonly
ôêèîðå  functions.

We now examine the performance of the proposed MRNN
recognizer. All five RNNs were first trained separately and then
combined to be retrained. 10 iterations were performed in each of
the second and third retraining stages. In the third-stage string-
level MCE/GPD training, top 20 best base-syllable sequences
were used. The experimental results are listed in Table 1. The best
base-syllable and string accuracy rates are 85.6% and 20.2%,
respectively. It is noted that the low string recognition rate is
owing to the use of no language model in the recognition search.

For performance comparison, the conventional HMM method
using the same basic recognition units was also tested. It employed
100 3-state RFD initial  HMM models, 39 5-state CI final HMM
models to form 411 8-state base-syllable HMM models and used a
single state HMM model for silence. The number of mixture
Gaussian components in each state of  these sub-syllable HMM
models varies from 1 to M depending on the number of training
data. Three values of M were examined. They are 5, 8, and 10.
Experimental results are also listed in Table 1  The best base-
syllable and string accuracy rates are 80.9% and 12.9%,
respectively. They are all inferior to those obtained by the
proposed MRNN method.

A rough comparison of the computational efficiencies of the
HMM and MRNN methods based on the total number of
parameters used was then checked. The experimental results are
shown in the last column of Table 1. It can be seen from Table 1
that the best MRNN method uses slightly fewer parameters than

the best HMM method. If the computational complexities of the
recognition searches are also considered, the proposed MRNN
method is more efficient than the conventional HMM method.

Lastly, the efficiency of the multi-level pruning method is
examined. In this test, all threshold values of the two FSMs are
empirically determined to meet the condition of keeping the
recognition accuracy almost the same as the baseline system. The
experimental results are listed in Table 2. It can be seen from the
table that only 82.0% of active syllable states and 35.6% of active
syllable transition paths are needed to be searched with no pay on
the degradation of recognition accuracy. It is a dramatic saving.

4. CONCLUSIONS

A novel MRNN-based method for continuous Mandarin speech
recognition has been discussed. It differs from the ANN/HMM
hybrid approach on adopting a pure ANN approach to  perform
not only the task of phoneme (sub-syllable) classes classification
but also the task of  temporal structure modeling. Experimental
results have confirmed that it outperforms the conventional HMM
method on both the recognition accuracy and the computational
complexity. So it is a promising method for continuous Mandarin
speech recognition. Further studies to incorporate it with a tone
recognizer and a language model are worth doing in the future.
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Ins. Del. Sub. Syl.
Acc.

Str.
Acc

Para.

HMM/Mix5 33   91 1304 79.7% 11.2% 104,800
HMM/Mix8 35   85 1227 80.9% 12.7% 161,850

 HMM/Mix10 39   83 1232 80.8% 12.9% 195,600
MRNN/100 44   83 1118 84.1% 18.0%   88,853
MRNN/150 44   88 1066 84.8% 20.2% 133,403
MRNN/200 34 105   875 85.6% 19.5% 187,953

Table 1. The recognition results of the HMM and MRNN
methods.

Active
syllable
states

Active  syllable
transition paths

Syllable
accuracy

rate

String
accuracy

rate
Baseline x x 85.6% 19.5%
deactivation 98.4% 98.4% 85.5% 19.5%
Pre-classification 79.7% 68.8% 85.6% 19.5%
Pre-segmentation x 36.1% 85.6% 19.5%
Multi-level 82.0% 35.6% 85.6% 19.7%
Table 2. The experimental results of the multi-level pruning
method.


