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ABSTRACT

In order to attain multichannel blind deconvolution of linear
time-invariant nonminimum-phasedynamic systems, Inouye
and Habe proposed in 1995 a single-stage maximization cri-
terion. The criterion function is the sum of squared forth-
order cumulants of the equalizer outputs, and the coeffi-
cients of the equalizer are determined at once. On the other
hand, one of possible approaches for multichannel blind de-
convolution is to construct an equalizer based on the sys-
tem identified by higher-order cumulant-matching. In this
paper, it is shown that the single-stage maximization crite-
rion is equivalent to a least-squares fourth-order cumulant-
matching criterion after multichannel pre-whitening of chan-
nel outputs. This result provides us with an important inter-
pretation of the single-stage maximization criterion.

1. INTRODUCTION

The problem of multichannel blind deconvolution of linear
time-invariant (LTI) dynamic systems has received increas-
ing attention in the past few years beginning with [1]. It
arises in a wide variety of applications; in array process-
ing for wideband sources under multipath propagation, in
speech and image enhancement, in digital communication.
See [1]–[6] and references therein.

In 1995, Inouye and Habe [1] proposed a multistage
maximization criterion and a single-state maximization cri-
terion to attain multichannel blind deconvolution of LTI dy-
namic systems or dynamically mixing signals. The for-
mer criterion can be easily implemented as algorithms [6]
because it is source-iterative or channel-iterative, i.e., the
sources are extracted at each channel and cancelled by one-
by-one. The latter criterion is yet difficult to implement as
algorithms [6][3], because the sources are extracted at once.

In this paper, we prove that the single-stage maximiza-
tion criterion for attaining multichannel blind deconvolu-
tion is equivalent to a least-squares fourth-order cumulant-
matching criterion, provided that multichannel whitening of
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Figure 1: The unknown system and an equalizer

channel outputs is performed ahead. This is an extension of
the result by Wax and Anu [7] in the multichannel static case
to the multichannel dynamic case. This equivalence gives us
an alternative interpretation of the single-stage maximiza-
tion criterion.

2. MULTICHANNEL BLIND DECONVOLUTION

Let us consider a multichannel linear tine-invariant (LTI)
and generally non-causal system described by

y(t) =

1X
k=�1

h(k)s(t� k); (1)

wherey(t) is ann-column output vector,s(t) is ann-column
input vector, andfh(k)g is ann�nmatrix impulse response
sequence. To retrieve the input signal, we process the output
signals by ann� n LTI equalizerW (z) given by

W (z) =

1X
k=�1

w(k)z�k: (2)

Let us denote theith component of a vectors by si and
express the equalizer output asz(t). We allow all of the
above variables to be complex-valued. Then the cascade
connection of the system and the equalizer is illustrated in
the schematic diagram in Fig. 1.



The goal of the blind deconvolution problem is to con-
struct an equalizer recovering the original input signal only
from the corresponding output signal of the system.

In the sequel, letx denote the fourth-order cumulant of
a complex-valued scalar random variablex, defined as

x := cumfx; x�; x; x�g; (3)

where superscript� stands for the complex conjugation of
a complex number. Then we make the following basic as-
sumptions on the systems and signals involved.

(A1) The systemH(z) is unknown. It is stable in the sense
that

1X
k=�1

jjh(k)jj <1; (4)

wherejj � jj denotes the Euclidean matrix norm. This
implies that it has no zero on the unit circle.

(A2) The transfer functionH(z) of the unknown system is
of full rank on the unit circlejzj = 1.

(A3) The input sequencefs(t)g is a zero-mean and non-
Gaussian random vector process, whose component
processesfsi(t)g for i = 1; : : : ; n are mutually inde-
pendent. Moreover, each component processfsi(t)g
is an independently and identically distributed (i.i.d.)
process with nonzero variance and nonzero fourth-
order cumulant.

(A4) The equalizerW (z) is stable.

For the blind deconvolution of the unknown system, we
can use only the outputs. Thus there are inherent ambigu-
ities in the multichannel blind deconvolution problem and
hence the multichannel blind deconvolution problem is for-
mulated as follows [1] : Find an equalizerW (z) so that the
transfer function of the combined system takes the form of

W (z)H(z) = �(z)DP; (5)

where�(z) is a diagonal matrix with diagonal entriesz�li

for i = 1; : : : ; n with li being an integer,D is ann � n

constant diagonal matrix, andP is ann � n permutation
matrix.

In order to eliminate the magnitude ambiguityD, we
may assume at the outset that the variance of each compo-
nentsi(t) of the input signal is one by dividingsi(t) by the
square root of the variance.

3. A SINGLE-STAGE MAXIMIZATION
CRITERION

To solve the blind deconvolution problem, Inouye and Habe
proposed the following criterion [1]: Maximize

Pn

i=1 jzi j
2
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Figure 2: The cascade system of an unknown system fol-
lowed by a whitening filter and an equalizer

subject toEfz(t + k)zy(t)g = I�(k) for k = 0;�1; : : : ;
wherez(t) is the output of the equalizer,Ef�g and y are
respectively expectation and complex conjugate transposi-
tion, I denotes then � n identity matrix, and�(k) stands
for the Kronecker delta. This criterion is referred to as the
single-stage maximization criterion, because it determines
all of the coefficients of the equalizer at once. It is shown
in [6] that, if there is no additive noise, then this criterion
gives an exact solution to multichannel blind deconvolution
problem.

To simplify the constrains in the criterion, we first whiten
the output signaly(t). This whitening procedure corre-
sponds to the one for the blind deconvolution of single-input
and single-output (SISO) dynamic systems by Shalvi and
Weinstein [8] and also the one for the blind deconvolution
of instantaneous mixtures by Comon [9].

The cascade connection of the unknown system followed
by a whitening filter is illustrated in the schematic diagram
in Fig. 2, whereA(z) is a whitening filter ofy(t) and~y(t)
is its output given by

~y(t) =

1X
k=0

a(k)y(t� k): (6)

It is noted that the cascade systemeH(z) = A(z)H(z) sat-
isfies the paraunitary condition

eH(ej!) eHy(ej!) = I; ! 2 [��; �): (7)

Next, we have to find an equalizer, denoted byfW (z), for
the cascade systemeH(z). We can seefW (z) is also parau-
nitary sinceEfz(t+ k)zy(t)g = I�(k). Thus the criterion
amounts to

arg max
f ~w(k)g2P

nX
i=1

j~zi j
2; (8)

whereP is the set ofn�nmatrix sequences whosez trans-
forms are paraunitary and~z(t) is the output of the equalizerfW (z) given by

~z(t) =

1X
k=�1

~w(k)~y(t� k): (9)



4. AN ALTERNATIVE INTERPRETATION OF THE
SINGLE-STAGE MAXIMIZATION CRITERION

In this section, we show that the single-stage maximization
criterion is equivalent to a least-squares cumulant-matching
criterion if the pre-whitening procedure is performed.

Let us define the fourth-order cumulant of ann-vector
processfx(t)g as in [10] and [11] as follows: The fourth-
order cumulantcx(m1;m2;m3) for a fixed integersm1,
m2,m3 is ann4-column vector whosef(k1�1)n3+(k2�
1)n2+(k3�1)n+k4gth component iscumfxk1(t); x

�
k2
(t+

m1); xk3 (t +m2); x
�
k4
(t +m3)g, whereki = 1; : : : ; n for

i = 1; 2; 3; 4. Then, from (1), we can derive a key relation
of the fourth-order cumulants of LTI systems [10] [11]:

cy(m1;m2;m3)

=
X

k1;k2;k3;k4

[h(k1)
 h�(k2)
 h(k3)
 h�(k4)] (10)

�cs(m1 + k1 � k2;m2 + k1 � k3;m3 + k1 � k4)

for m1;m2;m3 = 0;�1; : : : ;

where
 denotes the Kronecker product. Under the assump-
tion (A3), the above equation reduces to

cy(m1;m2;m3) =
X
i

[h(i)
 h�(i+m1)


h(i+m2)
 h�(i+m3)]cs(0; 0; 0): (11)

For notational simplicity, we expresscs(0; 0; 0) as

cs(0; 0; 0) = Us (12)

where
s = (s1 ; s2 ; : : : ; sn)

T (13)

andU is ann4 � n matrix with elementsuij ’s defined by

uij =

8<
:

1 , if i = (j � 1)(n3 + n2 + n) + j

for j = 1; 2; : : : ; n,
0 , otherwise.

(14)

From the above definition,U satisfies

UyU = I: (15)

Now let us consider a least-squares cumulant-matching
problem: Given the values ofcy(m1;m2;m3)’s of the out-
put of the unknown system, determine ann� n matrix im-
pulse responsefg(k)g and the fourth-order cumulants of
the input signals(t) by

min
fg(k)g;s

1X
m1;m2;m3=�1

jjcy(m1;m2;m3)

�cx(m1;m2;m3)jj
2

(16)

subject to

Efx(t+ k)xy(t)g = Efy(t+ k)yy(t)g; (17)

where

x(t) =

1X
k=�1

g(k)s(t� k): (18)

As in the previous section, we utilize the whitened out-
put ~y(t) in (6) instead ofy(t) in (1). Then the constrains
reduce to

Efx(t+ k)xy(t)g = Ef~y(t+ k)~yy(t)g

= I�(k): (19)

This means thatfg(k)g is inP so thatX
�

g(� + k)gy(�) = I�(k): (20)

Thus the criterion results in

min
fg(k)g2P;s

X
jjc~y(m1;m2;m3)� cx(m1;m2;m3)jj

2:

(21)
Note the following properties of the Kronecker products

[10] [11]:
(A
B)y = Ay 
By; (22)

and
(A
B) � (C 
D) = AC 
BD; (23)

whereA, B, C, andD are of appropriate size of dimen-
sions for defining the matrix multiplications. Using these
properties, from (11) with (18), we haveX

m1;m2;m3

jjcx(m1;m2;m3)jj
2

=
X

m1;m2;m3

X
i;j

�
ysU

y

� [gy(j)
 gT (j +m1)
 gy(j +m2)
 gT (j +m3)]
�

�
�
[g(i)
 g�(i+m1)
 g(i+m2)
 g�(i+m3)]Us

�
= ysU

y
X
i;j

�
gy(j)g(i)


X
m1

gT (j +m1)g
�(i+m1)



X
m2

gy(j +m2)g(i+m2)



X
m3

gT (j +m3)g
�(i+m3)

�
Us

= yss: (24)

Here we used (20) and (15) in the last equality.
Thus we getX
m1;m2;m3

jjc~y(m1;m2;m3)� cx(m1;m2;m3)jj
2

=
X

jjc~y(m1;m2;m3)jj
2 � ̂yss � ys ̂s + yss

=
X

jjc~y(m1;m2;m3)jj
2 + jjs � ̂sjj

2 � jĵsjj
2; (25)



where

̂s := Uy
X

m1;m2;m3;i

[gy(i)
 gT (i+m1)
 gy(i+m2)


gT (i+m3)]c~y(m1;m2;m3):
(26)

The first equality in (25) comes from (27) below, which is
derived from (12) and the formula (11) with (18):

ys ̂s =
X

m1;m2;m3

cyx(m1;m2;m3)c~y(m1;m2;m3): (27)

Since the first term in (25) is irrelevant to argumentss
andfg(k)g, the least-squares estimates ofs andfg(k)g are
respectively given bŷs in (26) and by

arg max
fg(k)g2P

jĵsjj
2: (28)

On the other hand, if we set

~z(t) =
X
k

~w(k)~y(t� k); (29)

then, from (10), the fourth-order cumulantc~z(0; 0; 0) of ~z(t)
is related to the fourth-order cumulants of~y(t) such as

c~z(0; 0; 0) =
X

m1;m2;m3;i

[ ~w(i)
 ~w�(i�m1)


 ~w(i�m2)
 ~w�(i�m3)]c~y(m1;m2;m3):
(30)

If we put

~w(k) = gy(�k); for k = 0;�1; : : :, (31)

then, using (26), (30) and the definition ofU , we have

jĵsjj
2 =

nX
i=1

j~zi j
2: (32)

Therefore, (28) is equivalent to

arg max
f ~w(k)g2P

nX
i=1

j~zi j
2; (33)

becausefg(k)g 2 P impliesf ~w(k)g 2 P .
Comparing (8) and (9) with (33) and (29), we can find

that the single-stage maximization criterion is equivalent to
the least-squares cumulant-matching criterion.

5. CONCLUSIONS

We have shown that the single-stage maximization criterion
for multichannel blind deconvolution is equivalent to the
least-squares fourth-order cumulant matching criterion after
multichannel pre-whitening of channel outputs. This equiv-
alence provides us a key link between the single-stage max-
imization criteria and the least-squares cumulant-matching
criterion.
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