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ABSTRACT

In this paper, a novel feature vector based on both Mel Fre-
quency Cepstral Coefficients (MFCCs) and a Mel-based nonlinear
Discrete-time Energy Operator (MDEO) is proposed to be used as
the input of an HMM-based Automatic Continuous Speech Recog-
nition (ACSR) system. Our goal is to improve the performance
of such a recognizer using the new feature vector. Experiments
show that the use of the new feature vector increases the recogni-
tion rate of the ACSR system. The HTK Hidden Markov Model
Toolkit was used throughout. Experiments were done on both the
TIMIT and NTIMIT databases. For the TIMIT database, when the
MDEO was included in the feature vector to test a multi-speaker
ACSR system, we found that the error rate decreased by about
9:51%. On the other hand, for NTIMIT, the MDEO deteriorates
the performance of the recognizer. That is, the new feature vector
is useful for clean speech but not for telephone speech.

1. INTRODUCTION

In this paper, we introduce a novel combination of features to be
used as the output of the front-end analyzer of anACSR system.
The new element that we combine with theMFCC coefficients is
the Teager Energy. Teager Energy calculation is based on the fact
that the speech signal can be modeled as the sum ofN AM-FM
signals. This model represents each component of the speech sig-
nal as a signal with a combined amplitude modulation (AM) and
frequency modulation (FM) structure. Hence, we can apply Tea-
ger’s algorithm [1] for computing the energy of a signal. We use
this algorithm as the basis for a new energy measure that replaces
the traditional energy measure; it is used for a new time-frequency
feature vector for speech recognition.

The nonlinear energy operator first developed by Kaiser [1] and
its discrete-time counterpart have found several applications in the
speech processing area [2],[3]. This discrete-time energy opera-

tor is defined as	[x(n)]
�

= x2(n) � x(n � 1)x(n + 1); n =
0; 1; ::; N � 1. In [2] it has been shown that, when the energy
operator	 is applied to an AM-FM signal, it can approximately
estimate the squared product of the amplitude and frequency sig-
nals.

Applying the energy operator to a speech signal to get the new En-
ergy’s parameter of the feature vector came from the fact that the

amplitude of the speech signal sample is always dependent on its
frequency and that the traditional energy measure reflects only the
amplitude of the signal, whereas the energy operator reflects the
variations in both amplitude and frequency of the speech signal.
This fact motivated us to include this element in the input feature
vector to an automatic speech recognition system to enhance its
performance.

This paper will be organized into the following sections. The sec-
ond section will present an introduction about the AM-FM Modu-
lation Model, theDEO, spectral analysis, the cepstral coefficients
and theMFCCs. Following this, the third section will discuss how
theMFCCs and theMDEO could be combined to be used as the
input feature vector of anACSR. Experimental results that demon-
strate the effectiveness of adding theMDEO in the feature vector
are presented in section4. Finally, in section5 we conclude and
discuss our present and future work.

2. BACKGROUND

2.1. AM-FM Modulation Model

Motivated by several nonlinear and time-varying phenomena dur-
ing speech production, Maragos, Quatieri and Kaiser [2] proposed
an AM-FM modulation model that represents each single speech
resonance (formant) as an AM-FM signal. This model represents
each resonance of a speech signal as a signal with a combined am-
plitude modulation (AM) and frequency modulation (FM) struc-
ture. Then, the speech signalx(t) is modeled as the sum ofN
such AM-FM signals, one for each formant, as follows:

x(t) =

NX
i=1

ai(t)cos
�
2�[fc;it+

Z t

0

qi(� ) d� ] + �i
�
; (1)

wherefc;i is the center value of theith formant frequency,qi(t)
is the frequency modulating signal, andai(t) is the time-varying
amplitude. Theith instantaneous formant frequency signal is
finst;i(t) = fc;i + qi(t). In the discrete-time domain theith

discrete-time AM-FM signal is defined as

xi(n) = ai(n) cos
�

c;i n+
m

Z n

0

qi(k) dk
�
; (2)



whereai(n) is the discrete-time amplitude envelope,
c;i is the
carrier frequency and
m is the modulation frequency. The dig-
ital instantaneous frequency of the discrete-time AM-FM signal,

inst;i, is defined as


inst;i(n) = 
c +
mq(n): (3)

2.2. Discrete-Time Energy Operator

The nonlinearDEO, 	[x(n)], first developed by Kaiser [1] and
its discrete-time counterpart have found several applications in the
speech processing area [2], [3]. TheDEO 	[x], which tracks the
energy of a source producing an oscillation signalx(t), is defined
as

	[x(t)] = [ _x(t)]2 � x(t)�x(t); (4)

where _x = dx=dt. In the discrete-time domain	[x(n)] is defined
as:

	[x(n)]
�

= x2(n) � x(n� 1)x(n+ 1); n = 0; ::; N � 1: (5)

In [2] it was shown that, when the energy operator	 is applied
to an AM-FM signal, it can approximately estimate the squared
product of the amplitude and frequency signals; i.e.,

	[x(t)] � [a(t)!inst(t)]
2; (6)

assuming thata(t) and!inst(t) do not vary too fast with time
compared to the carrier frequency!c. In the discrete-time domain
	[x(n)] could be written as:

	[x(n)] � [a(n)
inst(n)]
2: (7)

From Equation (7) we can see that the energy operator is a function
of both amplitude and frequency of the signal samples. Applying
the energy operator to a speech signal to classify it came from the
fact that the amplitude of the speech signal sample is always de-
pendent on its frequency and that the traditional energy measure
reflects only the amplitude of the signal, whereas the energy oper-
ator reflects the variations in both amplitude and frequency of the
speech signal.

The energy operator could be calculated either in the time domain
or the frequency domain. In the time domain, it can be calculated
using Equation (5). Whereas in the frequency domain, Equation
(7) is used for the energy operator calculation.

2.3. Spectral Analysis

There are many classes of spectral analysis algorithms which are
used in speech processing. The digital filter bank method is one
of these algorithms that is usually used in speech processing. A
filter bank can be regarded as a model of the initial transformation
in the human auditory system. Three choices for the frequency
axis of this bank of filters could be used in such analysis: uniform
spacing (as in the standard FFT), exponential spacing (a Constant-
Q or wavelet transform) or perceptually-derived spacing (the Mel
or Bark scales), which is somewhere between the other choices.
TheMel scale, which is adopted in this paper and to be used with
theDEO, is a mapping from a linear to a nonlinear frequency scale
based also on human auditory perception. An approximation to the
Mel-scale is:
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Figure 1: TheMel scale as a function of the acoustic frequency.

mel(f) = 2595 log
10

(1 +
f

700
); (8)

wheref corresponds to the linear frequency scale. This scale is
displayed in Figure (1). It is often approximated as a linear scale
from 0 to 1000 Hz, and then a logarithmic scale beyond1000 Hz.
The bandwidths of the filters used on a perceptualmel scale at a
given frequency can be computed using the following transforma-
tion [8]:

BW critical = 25 + 75
�
1 + 1:4(f=1000)2

�0:69
: (9)

One of the easiest and most efficient ways to compute a non uni-
formly spaced filter bank model of the signal is to perform a
Fourier transform on the signal, and sample the output at the de-
sired frequencies. However, often the spectrum is oversampled at
a finer resolution than that belonging to the nonlinear scale, and
each output of the filter bank,XNl, is computed as a weighted
sum of its adjacent values (i.e., kind of a spectral smoothing) as
follows [7]:

XNl =
1

NFB

NFBX
k=1

!FB(k)X(f + �f(f; k)); (10)

whereNFB represents the number of samples used to obtain the
average value,!FB represents a weighting function, and�f(f; k)
represents a function that describes the frequencies in the neigh-
borhood off to be used in computing the average.

2.4. Cepstral Coefficients

The cepstral coefficients are used to describe the short-term spec-
tral envelope of a speech signal. The cepstrum is the inverse
Fourier transform of the logarithm of the short-term power spec-
trum of the signal. By the logarithmic operation, the vocal tract
transfer function and the voice source are separated. Consequently,
the pulse sequence originating from the periodic voice source reap-
pears in the cepstrum as a strong peak at the quefrency lagTo.
The advantage of using such coefficients is that they reduce the
dimension of a speech spectral vector while maintaining its iden-
tity. There are two ways to obtain the cepstral coefficients: FFT
cepstral and LPC cepstral coefficients.
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Figure 2: Filters for generating mel-frequency cepstrum coeffi-
cients.

In [6] the use of the Mel-scale (Equation (8)) in the derivation of
cepstral coefficients was introduced. It was shown in this study
that such a scale improves the performance of speech recognition
systems over the traditional linear scale. For theMFCC compu-
tations,N critical bandpass filters that roughly approximate the
frequency response of the basilar membrane in the cochlea of the
inner ear are selected. These filters span156 � 6844 Hz and
are spaced on the Mel-frequency scale defined in equation (8),
which is roughly linear below1 kHz and logarithmic above this
frequency. The filters are triangular and multiplicatively scaled by
the area. These filters are applied to the log of the magnitude spec-
trum of the signal which is estimated on a short-time basis. To
obtain theMFCCs, Cn, a discrete cosine transform, is applied to
the output of theN filters,Xk, as follows:

Cn =

NX
k=1

Xk cos
�
� n

N
(k � 0:5)

�
; n = 1; 2; :::;M; (11)

whereM is the number of the cepstral coefficients,N is the analy-
sis order andXk; k = 1; 2; :::; N , represents the log-energy output
of thekth filter. For theMFCC computations,20 triangular band-
pass filters were simulated as shown in Figure (2).

2.5. The Hidden Markov Model Toolkit (HTK)

The speech recognition system used in our experiments,HTK , is
completely described in [5].HTK is aHMM -based speech recog-
nition system. The toolkit can be used for isolated or continuous
whole-word based recognition systems. The toolkit was designed
to support continuous densityHMMs with any number of state
and mixture components. It also implements a general parame-
ter tying mechanism which allows the creation of complex model
topologies to suit a variety of speech recognition applications.

3. ASR USING MFCCS AND THE MDEO

3.1. Signal Representation

The feature vector, which is used to represent the speech signal in
anASR process, aims to preserve the information needed to deter-
mine the phonetic identity of such a signal. The best feature vector

that can be used in such a process is the one that is not affected
by several factors such as speaker differences, paralinguistic fac-
tors and channel effects. Given the fact that our ears are largely
insensitive to phase effects, representations are almost always de-
rived from the short-term power spectrum. In addition, this power
spectrum reflects the frequency resolution of the human ear when
it is based on amel frequency scale. It was found in [4] that these
log power spectra for speech have properties more convenient for
statistically based speech recognition than the properties that are
obtained by linear power spectra. Moreover, removing the correla-
tion of energy levels in adjacent bands of the log power spectra al-
lows the number of parameters to be reduced while preserving the
useful information and consequently reduces the amount of com-
putation needed. Given these facts, the cosine transform which
converts the set of log energies to a set of largely uncorrelated cep-
stralMFCCs, when combined with the dynamic features and the
energy, was found to be the most popular feature vector that could
be fruitful in anASR process [4].

From Equation (7) we can see that the energy operator is a function
of both amplitude and frequency of the signal samples. Applying
the energy operator to a speech signal to get a feature that is help-
ful in increasing the recognition rate of anASR system came from
the fact that the amplitude of the speech signal sample is always
dependent on its frequency and that the traditional energy measure
reflects only the amplitude of the signal, whereas the energy oper-
ator reflects the variations in both amplitude and frequency of the
speech signal.

4. EXPERIMENTAL RESULTS

4.1. Database

The algorithm has been tested over a subset of both theTIMIT and
the NTIMIT databases [9]. The speech was sampled at16 kHz.
TheTIMIT corpus contains broadband recordings of630 speak-
ers of8 major dialects of American English, each reading10 pho-
netically rich sentences. TheNTIMIT database is the telephone-
bandwidth noisy version of theTIMIT database.

The baseline system used for the recognition task was a mono-
phone/tri-phone Gaussian mixtureHMM system. The speech was
parameterized into12 MFCCs along with theMDEO and the first
differentials of these parameters. This yielded a26-dimensional
feature vector. TheTIMIT database contains a total of6300 sen-
tences,10 sentences spoken by each of630 speakers from8 major
dialect regions of the United States. The acoustic training data con-
sisted of380 sentences from the training set of both theTIMIT
and NTIMIT databases in which the speech was sampled at16
kHz. The standardHTK system [5] was trained using a5-state
HMM for each phoneme, to define220 speech states. A sin-
gle component Gaussian mixture distribution was then trained for
each state, for a total of about34320 parameters. All recognition
tests were carried out on the test subset of both theTIMIT and
NTIMIT databases. This test set consists of110 sentences. The
data in theTIMIT database was recorded in a clean environment,
whereas theNTIMIT database is the telephone bandwidth noisy
version of theTIMIT database.

The speech data is segmented into25:6 msec frames with10 msec
overlapping. Each frame is weighted by a512-point Hamming
window, and then the DFT using512-point FFT of that frame is



�Sub(%) �Del(%) �Ins(%) CPh(%)
En 20.33 6.05 3.75 73.62
DEO 19.40 5.53 3.86 75.08
MDEO 18.46 5.63 3.65 75.91

Table 1: Recognition Performance on a subset of theTIMIT
database for single mixture monophone using word-pair gram lan-
guage model.

�Sub(%) �Del(%) �Ins(%) CPh(%)
En 16.06 5.01 3.65 78.94
DEO 15.33 5.42 4.48 79.25
MDEO 14.70 5.63 4.38 79.67

Table 2: Recognition Performance on a subset of theTIMIT
database for single mixture monophone using both word-pair gram
language model and function-word modeling.

computed. Then the feature vector is calculated for each frame.
Each vector is composed of12 staticMFCCs, plus theMDEO
and dynamic coefficients. This leads to a26-element vector per
frame. To compare our new vector to the vector which uses the
ordinary energy, we repeated the same calculation except that we
used ordinary energy instead of using theMDEO .

4.2. Results for clean speech

The results of our evaluation of a subset of the entire database are
listed in Tables (1) and (2). Table (1) shows the different recog-
nition error rates for a subset of theTIMIT database when tests
were performed using single mixture monophone acoustic models
and a word-pair language model. The substitution, deletion and in-
sertion percentage errors were defined respectively as:�Sub, �Del

and�Ins. The average phoneme accuracy rate was represented by
CPh. It is clear from this table that the average phoneme accu-
racy rate,CPh, is 73:62% when the traditional energy measure is
included in the feature vector. However, when theDEO is used,
instead of the traditional energy measure, the correspondingCPh

is 75:08%. Moreover, the correspondingCPh is 75:91% when
theMDEO is included in the feature vector; that is a9:51% im-
provement with respect to the one that we got when we used the
traditional energy measure. Table (2) shows the same tests when
we used both a word-pair language model and function-word mod-
eling. We got in this case about3:47% improvement.

4.3. Results for telephone speech

The recognition test was performed on the telephone speech us-
ing the same standard parameter settings used for theTIMIT
database. It was found from these tests that the inclusion of ei-
ther theDEO or theMDEO with theMFCCs parameters instead
of the traditional energy measure deteriorates the performance of
the recognition process. This is due to the fact that theDEO is
sensitive to noise if it is applied to signals which have noise added
to them [1]. Consequently, we did not include these results in this
paper.

5. CONCLUSION

We have proposed in this paper a new feature vector based on
the mel-based discrete energy operator. Results showed that the
energy calculated based on theMDEO performs better than the
traditional energy when used combined with theMFCC to train
theHMMs of anACSR system for clean speech signals (TIMIT
database). Preliminary results showed that the inclusion of such
parameter in the feature vector reduces the average phoneme error
rate by about9% below than that obtained using the traditional fea-
ture vectors that are based on energy measurements. However, for
telephone speech the inclusion of the traditional energy in the fea-
ture vector performs better than the proposedMDEO . This shows
the effectiveness of adding such a parameter to the feature vector
for the recognition of clean speech.

We are currently continuing the effort towards the use of other
auditory-based strategies instead of the mel approximation in or-
der to get a more robust feature vector that can be used for the
recognition of both clean and telephone speech.
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