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ABSTRACT

Learning the influence of additive noise and channel distortions
from training data is an effective approach for robust speech
recognition. Most of the previous methods are based on
maximum likelihood estimation criterion. In this paper, we
propose a new method of discriminative learning environmental
parameters, which is based on Minimum Classification Error
(MCE) criterion. By using a simple classifier defined by
ourselves and the Generalized Probabilistic Descent (GPD)
algorithm, we iteratively learn environmental parameters. After
getting the parameters, we estimate the clean speech features
from the observed speech features and then use the estimation of
the clean speech features to train or test the back-end HMM
classifier. The best error rate reduction of 32.1% is obtained,
tested on a Korean 18 isolated confusion words task, relative to
conventional HMM system.

1. INTRODUCTION

One of main difficulties in robust speech recognition is to
overcome additive noise and channel distortions in environment.
Learning distribution changes of clean speech influenced by
additive noise and channel distortions from training data and then
compensating the changes is an effective approach, and has been
widely discussed [1-3]. Most of the previous methods are based
on maximum likelihood estimation criterion and do not generally
lead to a minimum error rate result. Recently, a discriminative
learning method was proposed[4], which used Generalized
Probabilistic Descent (GPD) algorithm to iteratively adjust the
classifier parameters according to the criterion of the Minimum
Classification Error (MCE) and, therefore, directly minimize the
misclassifications. The discriminative learning method is first
used for training speech recognizer, e.g. HMM-based recognizer
[5], and then applied to  feature extraction for speech recognition,
which is called Discriminative Feature Extraction (DFE) [6] and
used to design a filter band [7], and to find the optimal linear
transformation of mel log spectrum [8]. In  all the cases, DFE has
been shown to be a powerful tool for error rate reduction.
However, DFE needs simultaneously estimate both the feature
extractor and the back-end HMM classifier. This is because that
any modification of the feature extractor affects the parameter
estimation of the back-end HMM classifier.
In this paper, we propose a new DFE-like method to learn
environmental parameters (additive noise and channel
distortions ). Different from the former assumption of speech
features distribution, which supposes that the observed noisy
speech features follow the Gaussian distribution and has been
proved to be not suitable to the practice by some literature ( e.g.

[2] ), we assume that the clean speech features follow the
Gaussian distribution. By using a simple classifier defined by
ourselves and the MCE/GPD algorithm, we iteratively learn the
environmental parameters. After getting the parameters, we
estimate the clean speech features from the observed noisy
speech features and then use the estimation of the clean speech
features to train or test the back-end HMM classifier. Compared
with DFE, the proposed method gets the environmental
parameters by using a simple classifier and does not affect the
back-end HMM classifier, thus it is simpler than the current DFE
methods. In our experiments, the best error rate reduction of
32.1% is obtained, tested on a Korean 18 isolated confusion
words task, relative to conventional HMM system.

2. DISCRIMINATIVE LEARNING OF
ENVIRONMENTAL PARAM ETERS

2.1 Environmental Model
  
We assume that the clean speech signal is first passed through a
channel distortions filter whose output is then corrupted by
uncorrelated additive noise. If we use y km[ ] , x km[ ] , h km[ ]  and

n km[ ]  to represent the  mel-frequency log power spectrums of

the observed speech, the clean speech, the channel distortions
filter and the additive noise respectively, and k is a particular
mel-frequency band, then we  can get

x k y k h k n k y km m m m m[ ] [ ] [ ] log( exp( [ ] [ ]))= − + − −1 .        (1)

Most of the current speech recognizer use the cepstral vectors as
the features. When the environmental influence is observed in the
cepstral domain, the relationship between cepstrums of the
speech, the noise and the channel distortions is a rather
complicated non-linear function as follow

X Y h C I C n Y -1= − + − −{log( exp( ( )))}     (2)

where X, Y, n, and h are the cepstral vectors of the clean speech,
the observed speech, the noise and the channel distortions filter,
respectively,  I  is the unity vector, C and C -1 are the cosine
transform matrix and inverse cosine transform matrix,
respectively.
We assume that there are many kinds of additive noise in the
environment, and we can use the weighted combination of
multiple types of noise to represent n
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where nv  is the v_th type noise, wv the weight of nv , V the

number of types.
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We also assume the channel distortions h are consisted of the
channel distortions of the whole training data and the channel
distortions of the current utterance, and it can be implemented as
follow

h h h= ⋅ + − ⋅α α
wh cu( )1    (5)

where hwh  and hcu  are the whole channel distortions and the

current one, respectively, and α is an empirical constant.
In this case, the equation (2) can be rewritten as,
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If we useΦ to represent the environmental parametersnv , wv

andhwh , then using the estimatedΦ and Y, X can be estimated.

  
2.2  Learning of Environmental Parameters

Let’s suppose we have a set of the observed speech cepstral
training sequences {Y1 , Y2 , … ,YM } and a set of classes

{ , ,..., }λ λ λ
1 2 N . We further assume that the all estimated clean

speech signalX m that belong to λ i can be segmented into  some

equal parts and each same part follows a Gaussian distribution
N

m a i a i aX , , ,( , )µ ∑  (for a_th segmentation of X m , a=1,2, …, A ),

and the classifier we propose for learning environmental
parameters models the estimated clean speech by the probability
density function
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where d is the dimension ofX m , µ i a, and i a,∑ can be calculated

µ i a i m aE, ,( )= X                          (8)

∑ = − −i a i m a i a m a i a
tE, , , , ,(( )( ) )X Xµ µ .      (9)

The goal of discriminative learning is to reduce the number of
misclassifications through a minimization of the average loss
function, the steps are as follow.

1. Discriminative function: According to the model, the
discriminative function is constructed as
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The implied decision rule for classification is defined as

     Xm i
∈λ ,          if   g gi m j j m( , ) max ( , )X XΦ Φ= .        (11)

2. Misclassification Measure: Given a discriminative function,
the misclassification measure is

di m( , )X Φ = − +g gi m m( , ) ( , )X XΦ Φψ    (12)

whereλψ is the most confusable class. di m( , )X Φ > 0  implies

misclassification and di m( , )X Φ ≤ 0  means correct classification.

3. Loss Function: The lost function is defined as a sigmoid
function of di m( , )X Φ

ζ
i m i md( , ) ( exp( ( , )))X XΦ Φ= + −1 1 .            (13)

4. Average Loss Function: For all the training data X m ( m=1,2,

… , M ), the average lost function is defined as
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5. Minimization: The parameterΦ can be computed iteratively by
minimizing the lost function L( )Φ .

Φ Φ Φt t tt L= − ∇−1 η( ) ( )                 (15)

where Φ t is the environmental parameter at the t_th iteration,
∇L t( )Φ is the gradient of the average loss function. To control
the convergence of the training procedure, we set the learning
step size η( ) / ( )t T tc

= +1 2 , with Tc  being a prescribed large

value ( =50 in our case ).

2.3 Gradient Calculation

The environmental parameters are adaptively adjusted to reduce
the average loss function along a gradient descent direction. The
gradient is obtained by computing the partial derivatives of
L( )Φ
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The first factor in the right-hand-side of equation (17) can be
simplified to
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The second factor of the right-hand-side of equation (17) can be
simplified as follow
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The third factor of the right-hand-side of equation (17) can be
modified to
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For the whole channel distortions and noise, the fourth factors in
equation (17) are
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Since the gradient descant search could produce local optimality
problems, a good initialization is recommended for the estimated
parameters. CMS[9] has been proved to be an effective channel
compensation method, which uses the cepstral mean of the
utterance being the channel distortions. Thus it is reasonable to
use the cepstral mean of all the utterances in the training database
as an initial value of the whole channel distortions.
Generally, noise follows a kind of distribution, we simplify the
issue by using a set of VQ codebook to represent the noise initial
distribution. By using noise sample data and LBG [10] algorithm,
we can get the initial value of the noise. And we use 1/V as the
initial value of the weightwv .

3. EXPERIMENTS

In our experiments, a continuous density phoneme-based HMM
speaker independent recognizer was used. Each feature vector
consists of 12 mel frequency cepstral coefficients ( MFCCs ).
The vocabulary consisted of the 18 Korean isolated confusion
words recorded by 80 speakers over different telephone channels
at different times. Isolated words were manually segmented and
labeled, and 40 speakers’ 1850 utterances were used for training
and another 40 speakers’ 1371 utterances for testing. The SNRs
of training database and testing database are 14.07dB and
13.95dB, respectively. A series of experiments are designed to
evaluate the proposed method.

Table.1 Word error rates using various segmentation

 Segment
   Two
segment

  Three
segment

  Four
segment

Phoneme
segment

  
Error rate   8.39%   9.04%

  
   8.1%

         
  7.73%

We first select the parameter α in the equation ( 6 ) by using four
segmentation for all X m  (A=4) and four types of noise (V=4) ,

the results of ten iterations are shown in Fig. 1. It shows that α
=0.3 exhibits an optimum, which is adopted in the following
experiments. We find when α =1.0 the cepstral mean of the
whole training data is used as the channel distortions and not
consider the influence of the current utterance, it is not very
good. And when α =0.0 the cepstral mean of the current speech
is used as the channel distortions, which is very similar to CMS,
the result is also not very good.

Table.2 Word error rates using various methods

Method  Baseline  CMS RMFCC DFE EDFE
    Error
     rate

   
   11.2%  10.9%

        
   8.4%

     
 7.5%

   
 7.6%

   Error
reduction

      
      −

   
  2.7%

           
  25.0%

  
33.0% 32.1%

We then compare the results of equal segmentation for all words
and the different segmentation for different words based on the
number of phonemes, the word error rates for V=4 are listed in
Table.1. It shows that the segmentation based on phoneme is
good, which is used in the following experiments.
We also evaluate the performances under the various
combination types of noise, and Fig.2 shows the results. It is seen
that the types of noise V=8 is enough for our database. Finally,
we compare the proposed method EDFE ( Environment
Discriminative Feature Extraction ) with CMS, our previous
method RMFCC [11], and DFE, the results are listed in Table.2.
It is seen that EDFE is better than CMS and RMFCC. Compared
with DFE, EDFE gets near the same performance but needs
almost half computational complexity. With respect to both the
performance and the computational complexity, EDFE is the best
one.
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Fig.1 Performances of  using different  channel combination
parameter α

4. CONCLUSION

We have proposed a new DFE-like method, which learns the
environmental parameters by using a simple classifier defined by
ourselves and the MCE/GPD algorithm. After getting the
parameters, we estimate the clean speech features from the
observed speech features and then use the estimation of the clean
speech features to train or test the back-end HMM classifier.
Compared with DFE, the proposed method gets the
environmental parameters by using a simple classifier and does
not affect the back-end HMM classifier, thus it is simpler than
the current DFE methods. In our  experiments, the best error rate
reduction of 32.1% is obtained, tested on a Korean 18 isolate
confusion words task, relative to conventional HMM system.
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