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ABSTRACT

We address the problem of joint Schur decomposition
(JSD) of several matrices. This problem is of great impor-
tance for many signal processing applications such as sonar,
biomedicine, and mobile communications. We �rst present
a least-squares (LS) approach for computing the JSD. The
LS approach is shown to coincide with that proposed in-
tuitively by Haardt et al, thus establishing the optimality
of their criterion in the least-squares sense. Following the
LS criterion, we then propose new Jacobi-like algorithms
that extend and improve the existing JSD algorithms. An
application of the new JSD algorithms to multidimensional
harmonic retrieval is also presented.

1. INTRODUCTION

Estimating the joint eigenstructure of several matrices is a
problem that arises in many multivariate signal processing
applications, e.g., joint diagonalization for source separa-
tion [3], joint eigendecomposition for parameter pairing [6],
joint block-diagonalization for source localization [5], joint
Schur decomposition (JSD) for multidimensional harmonic
retrieval [1] and blind system identi�cation [2], etc. A de-
tailed review of various techniques for joint eigenstructure
estimation is also available in [6]
In this paper, we will focus on the JSD problem [1]. We

present a least-squares (LS) approach to joint Schur decom-
position. Then, we introduce new iterative JSD algorithms
for symmetrical and non-symmetrical cases. These algo-
rithms are Jacobi-like techniques that minimize a squared
error cost function iteratively by means of Givens rota-
tions. An advantage of the Jacobi methods is their inherent
parallelism, which allows e�cient implementations on cer-
tain parallel architectures [7]. Another virtue of the Jacobi
methods is their favorable rounding-error properties, in the
sense that small relative perturbation in the matrices entries
cause small relative perturbations in the entries of their en-
genstructures [8]. In addition to the favorable properties
of the Jacobi-like techniques, the proposed algorithms have
the advantage to be simpler, more general, and computa-
tionally less expensive than those presented in [1, 2].

2. PROBLEM FORMULATION

Consider a set ofK matrices,M1; � � � ;MK ,Mi 2 Cn�n; i =
1; � � � ; K, that have the following Schur decomposition:

Mi = QRiZ
�; i = 1; � � � ; K (1)

where Q and Z are unitary matrices and Ri; i = 1; � � � ; K
are upper triangular matrices. Z� denotes the transpose
conjugate of Z.
The matrices Mi; i = 1; � � � ; K are said to be jointly

Schur decomposable under the unitary transforms Q and
Z.
In particular, the JSD problem is said to be symmetrical

if Q = Z, i.e.,

Mi = QRiQ
�; i = 1; � � � ; K

The problem of JSD consists in estimating the matrices
Q, Z, and Ri; i = 1; � � � ; K given the matrices Mi; i =
1; � � � ; K.
A possible approach to the JSD problem would be to ap-

ply a conventional Schur decomposition algorithm to M1

alone, and then performs the same unitary transform (i.e.,
Q and Z) on M2; � � � ;MK to compute R2; � � � ;RK . Unfor-
tunately, this approach is not consistent since M1 may be
made upper triangular by a unitary matrix that does not
make M2; � � � ;MK upper triangular.
On the other hand, the matrices M1; � � � ;MK are given,

in practice, by some sample estimated statistics that are
corrupted by estimation errors due to noise and �nite sam-
ple size e�ects. Thus, they are only \approximately" simul-
taneously Schur decomposable. This suggests that a viable
JSD algorithm must provide a kind of an \average eigen-
structure" when it is applied to a set of nearly joint Schur
decomposable matrices. An optimal solution based on a
least-squares approach is given next1.

3. LEAST-SQUARES APPROACH

A least-squares �tting technique consists here in choosing
the unitary matrices Q and Z and the upper triangular ma-
trices Rk that minimize the Frobenius norm of the di�er-
ence between the data matrices Mk and the true matrices
given by (1)

min
Q;Z;fRkg

KX
k=1

kMk �QRkZ
�k2 (2)

To solve the minimization problem we �rst minimize with
respect to the upper triangular matrices fRkg, with the
matrices Q = [q1; � � � ;qn] and Z = [z1; � � � ; zn] held �xed.

1A similar approach has been presented in [4] for joint
diagonalization.



This latter problem is equivalent to the minimization of
each term in (2), i.e.,

min
fRkg

kMk �QRkZ
�k2 (3)

Using the vectorizing operator, vec(:) and removing the zero
entries of Rk (i.e., the strictly lower triangular entries), the
minimization turns into

min
rk

kmk �Wrkk
2 (4)

where mk
def
= vec(Mk) and

rk
def
= [Rk(1; 1);Rk(1; 2);Rk(2; 2); � � � ;Rk(1; n);

� � � ;Rk(n; n)]
T : n(n+ 1)=2 � 1

W
def
= [z1 
 q1; z2 
 q1; z2 
 q2; � � � ; zn 
 q1;

� � � ; zn 
 qn] : n2 � n(n+ 1)=2

where 
 denotes the Kronecker product and z is the conju-
gate of z. The solution to (4) is given by

rk =W#mk = (W�W)�1W�mk: (5)

Since Q and Z are unitary, we can easily check that
W�W = I, and thus

rk =W�mk (6)

Substituting (6) into (2) yields the following estimation cri-
terion:

min
Q;Z

KX
k=1

k(I�WW�)mkk
2 () max

Q;Z

KX
k=1

kW�mkk
2

() max
Q;Z

KX
k=1

U(Q�MkZ)

Using the fact that the Frobenius norm of a matrix is un-
changed under unitary transforms, this is �nally equivalent
to minimizing under unitary transforms Q and Z the fol-
lowing nonnegative function:

C(Q;Z)
def
=

KX
k=1

L(Q�MkZ) (7)

where for any matrix M, we de�ne

U(M)
def
=

X
1�i�j�n

jM(i; j)j2

L(M)
def
=

X
1�j<i�n

jM(i; j)j2

4. JSD ALGORITHMS

To minimize the JSD criterion (7), we choose here to com-
pute the unitary matrices Q and Z as products of Givens
rotations that we describe next.

Givens rotations: In Jacobi-like algorithms, a unitary ma-
trix U is decomposed into a product of elementary Givens
rotations,i.e.,

U =
Y

# of sweeps

Y
1�p<q�n

�(qp)

where the elementary Givens rotations �(qp) are de�ned as
unitary matrices where all diagonal elements are 1 except
for the two elements equal to c in rows (and columns) p
and q. Likewise, all o�-diagonal elements of �(qp) are 0
except for the two elements s and �s� at (p; q) and (q; p)
respectively. The scalar numbers c and s are given by�

c = cos �
s = sin � exp(i�)

In the sequel, we describe a procedure to choose the rota-
tion angles � and � at a particular iteration such that the
cost function C(�(qp); I), C(I;�(qp)), or C(�(qp);�(qp)) is
decreased to its minimum. To this end, we need to specify
the orthogonal transformations

M0 = ��
(qp)M (8)

M00 = M�(qp) (9)

M000 = ��
(qp)M�(qp) (10)

for any given matrix M 2 Cn�n. First notice that these
orthogonal transformations change only the rows p and q of
M, the columns p and q of M, and pth and qth rows and
pth and qth columns of M, respectively. More speci�cally,
the changed entries of M0, M00, and M000 in their strictly
lower triangular part are given by:

M0(p; j) = cM(p; j)� sM(q; j); j < p

M0(q; j) = s�M(p; j) + cM(q; j); j < q

M00(j; p) = cM(j; p)� s�M(j; q); j > p

M00(j; q) = sM(j; p) + cM(j; q); j > q (11)

and M000(k; j) = M0(k; j); k = p; q; j < k and M000(j; k) =
M00(j; k); k = p; q; j > k except for the (q; p)�th entry
which is given by

M000(q; p) = c2M(q; p)�s�c(M(q; q)�M(p; p))�M(p; q)s�2

(12)

Non-symmetrical JSD algorithm: The proposed method
consists of minimizing iteratively the JSD criterion (7) by
successive Givens rotations, starting from Q = I, Z = I.
At the end of the iterative procedure, we have

Q =
Y

# of iterations

Y
1�p<q�n

�(qp)

Z =
Y

# of iterations

Y
1�p<q�n

�0
(qp)



where �(qp) and �
0
(qp) are computed such that C(�(qp); I)

and C(I;�0
(qp)) are minimum2, respectively.

The non-symmetrical JSD algorithm can be summarized
as follows (using informal notation):

Q = I, Z = I
for k = 1; :::;# iterations
for 1 � p < q � n
a. �(qp) = argmin�;� C(�(qp)(�; �); I)
Q := Q�(qp) and Mk := ��

(qp)Mk; k = 1; � � � ; K
b. �0

(qp) = argmin�;� C(I;�(qp)(�; �))
Z := Z�0

(qp) and Mk :=Mk�
0
(qp); k = 1; � � � ; K

To minimize C(�(qp); I) or C(I;�
0
(qp)), we force their par-

tial derivatives with respect to parameters � and � to zero.
That leads to the following explicit expressions (for simplic-
ity, we omit here the calculation details):

� = arctan(
=m(a)

<e(a)
)

�0 = arctan(
=m(a0)

<e(a0)
)

� =
1

2
arctan(�2

<e(e�i�a)

b
)

�0 =
1

2
arctan(�2

<e(e�i�a0)

b0
)

where

a =
X
k

X
p�j<q

Mk(p; j)M
�
k(q; j)

a0 =
X
k

X
p<j�q

Mk(j; p)
�Mk(j; q)

b =
X
k

X
p�j<q

jMk(p; j)j
2 � jMk(q; j)j

2

b0 =
X
k

X
p<j�q

jMk(j; p)j
2 � jMk(j; q)j

2

Finally, note that in the real case � = 0 and only the last
two equations are used.

Exact Symmetrical JSD algorithm:The symmetrical JSD
algorithm has the same iterative structure as the non-
symmetrical one, with the exception that the same Givens
rotation �(qp) is applied on both left and right sides of
M1; � � � ;MK (i.e., we use the orthogonal transformation
(10) instead of (8) and (9)). To estimate the angle parame-
ters of�(qp) we have to minimize C(�(qp);�(qp)). Contrary
to the previous situation, this minimization is more complex
due to the non-linear term (in terms of c and s) M000(q; p).
After some straightforward derivations (that we omit here

for sake of simplicity), the minimization of C(�(qp);�(qp)) is

2Note that the criterion is calculated with the current values
of the matricesM1; � � � ;MK which are updated at each iteration
using the orthogonal transformations (8) and (9). For notational
simplicity, we keep using the generic notation M1; � � � ;MK to
denote the updated matrices.

shown to be equivalent to the minimization of the quadratic
form

min
kvk=1

(vTGv+ gTv) (13)

where v = [cos(2�); sin(2�) cos(�); sin(2�) sin(�)]T and G
(resp. g) is a 3 � 3 matrix (resp. a 3 � 1 vector) the
expressions of which are given in the appendix.
Using Lagrange multiplier, the minimization of (13) leads

to:
v = (G+ �I)�1g (14)

where � is a real scalar satisfying:

3X
i=1

juTi gj
2

(�i + �)2
= 1 (15)

fuig and f�ig being the eigenvectors and eigenvalues of
G. As we can see from (15), the exact minimization of
C(�(qp);�(qp)) involves a 6th order polynomial rooting (or
a 4th order polynomial rooting in the real case). In case
where (15) has multiple real-valued roots, we select the
one corresponding to the minimum value of C(�(qp);�(qp)).
Next, by means of a slight approximation of the JSD cri-
terion, we present an alternative solution to (13) where no
polynomial rooting is required.

Approximate Symmetrical JSD algorithm: To simplify the
symmetrical JSD algorithm, we choose here to approximate
jM000(q; p)j2 by jM000(q; p)j2 � jM0(q; p)j2 + jM00(q; p)j2.
This can be shown to be a �rst order approximation for
jM000(q; p)j2. With this approximation, we have

C(�(qp);�(qp)) � C(�(qp); I) + C(I;�(qp))

and thus, the minimization of C(�(qp);�(qp)) leads to the
explicit expressions:

� = arctan(
=m(a+ a0)

<e(a+ a0)
); � =

1

2
arctan(�2

<e(e�i�(a+ a0))

b+ b0
)

5. APPLICATION TO MULTIDIMENSIONAL
HARMONIC RETRIEVAL

We consider here the problem of eigenvalues estimation and
association using the well known subspace rotation invari-
ance technique [6, 9]. The data model is given by

JE = [ET
0 ; � � � ;E

T
m�1]

T (16)

where for i = 0; � � � ;m�1; Ei = A�iT. The n�dmatrix E
has d independent columns and represents some processed
data often available as an estimate of \signal subspace"
which can be computed from, for example, the eigendecom-
position of an array output covariance matrix. The ml� n
matrix J is a selection matrix, each element of which is ei-
ther zero or one. The l � d matrix A is unknown and of
full column rank. The matrix �i is a full rank diagonal
(rotation) matrix. But �0 = I. The other �i's often con-
tain the desired information such as frequencies, damping
factors, directions and polarizations. The d�d matrix T is
an arbitrary unknown nonsingular matrix. Let E#

0 denote
the pseudo-inverse of E0 and let

Ui = E#
0 Ei = T�1�iT; i = 1; � � � ;m� 1 (17)



The signal parameters (i.e., diagonal matrices �i; i =
1; � � � ;m� 1) can be estimated as the eigenvalues of Ui; i =
1; � � � ;m�1. This approach however requires a second step
of parameter pairing since the eigenvalues are estimated up
to a random permutation [6].
By decomposing T�1 into its QR form, i.e., T�1 = QR,

we obtain for i = 1; � � � ;m� 1

Ui = QRiQ
�; Ri = R�iR

�1:

As we can see, we have diag(Ri) = �i. Therefore, a con-
venient approach to simultaneously estimate and associate
the eigenvalues consists in using a JSD of U1; � � � ;Um�1.
Figure 1 presents a simulation example for 2-D (az-

imuth/elevation) source localization using the symmetrical
JSD algorithm. We consider here a 2-D antennas array with
3 subarrays. The �rst subarray consists of n = 6 sensors
lying uniformly along the x-axis with a sensor to sensor dis-
placement equal to half the wavelength of the signal waves,
i.e., � = !0=(2c). The two other subarrays are located at
(�1; �1) = (�; 0) and (�2; �2) = (0; �), respectively. We
assume d = 3 independent sources located at (20o;�20o),
(30o; 20o) and (45o; 20o), respectively corrupted by addi-
tive Gaussian noise. The sample size is T = 250. The plots
show the MSE vs. the SNR (in dB) for azimuth and eleva-
tion estimates for the 3 sources. In this context, we observe
similar performance accuracy for both exact (in solid line)
and approximate (in dashed line) JSD algorithms.
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Figure 1. MSE (dB) vs SNR (dB).

6. CONCLUSION

In this paper, we have introduced a LS approach for joint
Schur decomposition. We have proposed new Jacobi-like
algorithms that minimize the squared errors cost function
iteratively by means of Givens rotations. The main advan-
tages of the new algorithms are their inherent high paral-
lelism, their robustness to noise and rounding errors, and
their computational simplicity (i.e., they are computation-
ally simpler than existing JSD algorithms [1, 2]). We have
also presented an application example for multidimensional
harmonic retrieval to illustrate the usefulness of the pro-
posed method.

APPENDIX

Using equation (11) and (12) and the equalities c2 =
(cos(2�) + 1)=2, jsj2 = (1 � cos(2�))=2, and cs =

sin(2�)ei�=2, we obtain

jM000
k (q; p)j

2 = vTGkv+ g
T
k v+ cte

jM0
k(p; j)j

2 � cte = �jM0
k(q; j)j

2 + cte = xTkjv

jM00
k(j; p)j

2 � cte = �jM00
k(j; q)j

2 + cte = yTkjv

where cte denotes terms independent from (�; �). Thus

G =

KX
k=1

Gk; g =

KX
k=1

 
gk +

X
p<j<q

xkj � ykj

!

Gk = 1
4
[gij ]1�i;j�3 is a 3� 3 real symmetric matrix which

entries are given by:

g11 = jMk(q; p)j
2 + jMk(p; q)j

2 � jMk(q; q)�Mk(p; p)j
2

g12 + ig13 = (M�
k(q; p) +M

�
k(p; q))(Mk(p; p)�Mk(q; q))

g22 + ig23 = �g33 + ig32 = �2M�
k(q; p)Mk(p; q)

and

gk =
1

2

"
jMk(q; p)j

2 � jMk(p; q)j
2

<e((Mk(q; p)�Mk(p; q))(M
�
k(p; p)�M

�
k(q; q))

�=m((Mk(q; p)�Mk(p; q))(M
�
k(p; p)�M

�
k(q; q))

#

xkj =

"
jMk(q; j)j

2 � jMk(p; j)j
2

<e(Mk(p; j)M
�
k(q; j)

=m(Mk(p; j)M
�
k(q; j)

#

ykj =

"
jMk(j; q)j

2 � jMk(j; p)j
2

<e(M�
k(j; p)Mk(j; q)

=m(M�
k(j; p)Mk(j; q)

#
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