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ABSTRACT

In many wireless systems where multiuser detection tech-
niques may be applied, the ambient channel noise is known
through experimental measurements to be decidedly non-
Gaussian, due largely to impulsive phenomena. The per-
formance of many multiuser detectors can degrade substan-
tially in the presence of such impulsive ambient noise. In
this paper, a blind adaptive robust multiuser detection tech-
nique 1s developed for combating both multiple-access in-
terference and impulsive noise in CDMA communication
systems. This technique is nonlinear in nature and it is
based on the signal subspace tracking method and the M -
estimation method for robust regression. It is seen that the
proposed technique offers significant performance gain over
linear adaptive multiuser detectors in impulsive noise, with
little attendant increase in computational complexity.

1. INTRODUCTION

Recent years have seen a significant interest in advanced sig-
nal processing techniques for enhancing the performance of
non-orthogonal signaling schemes for multiple-access com-
munications. These techniques generally fall under the cat-
egory of multiuser detection [7], which refers to optimum
or near-optimum demodulation in such situations. By and
large, the study of this problem has focused on the situ-
ation in which the ambient noise is additive white Gaus-
sian noise (AWGN). As increasingly practical techniques
for multiuser detection become available, such as adaptive
and blind adaptive multiuser detection methods [2], the sit-
uation in which practical multiple-access channels will be
ambient-noise limited can be realistically envisioned.

In many physical channels, such as urban and indoor
radio channels and underwater acoustic channels, the am-
bient noise is known through experimental measurements
to be decidedly non-Gaussian, due to the impulsive nature
of the man-made electromagnetic interference and a great
deal of natural noise as well. In view of the lack of real-
ism of an AWGN model for ambient noise arising in many
practical channels in which multiuser detection techniques
may be applied, natural questions arise concerning the ap-
plicability, robustness and performance of multiuser detec-
tion techniques for non-Gaussian multiple-access channels.
Although performance indices such as mean-square-error
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(MSE) and signal-to-interference-plus-noise ratio (SINR)
for linear multiuser detectors are not affected by the distri-
bution of the noise (only the spectrum matters), the more
crucial bit-error rate can depend heavily on the shape of
the noise distribution. In particular, impulsive noise can
severely degrade the error probability for a given level of
ambient noise variance. In the context of multiple-access
capability, this implies that fewer users can be supported
with conventional detection in an impulsive channel than
in a Gaussian channel. However, since non-Gaussian noise
can, in fact, be beneficial to system performance if properly
treated, the problem of joint mitigation of structured inter-
ference and non-Gaussian ambient noise is of interest [5].
A recent study [6] has shown that the performance gains
afforded by maximum likelihood (ML) multiuser detection
in impulsive noise can be substantial when compared to
optimum multiuser detection based on a Gaussian noise as-
sumption. However, the computational complexity of ML
detection is quite high, and therefore effective near-optimal
multiuser detection techniques in non-Gaussian noise are
needed. In this paper, we consider the problem of blind
adaptive multiuser detecion in direct-sequence code-division
multiple-access (DS-CDMA) channels with non-Gaussian
ambient noise.

2. SYSTEM MODEL

Consider a baseband digital DS-CDMA network operating
with a coherent BPSK modulation format. The waveform
received by a given terminal in such a network can be mod-
eled as, for —oo < t < o0,

r(t) = Aw Z be(i)sk(t — T — 7% ) + n(2), (1)

where M is the number of data symbols per user in the data
frame of interest; T is the symbol interval; n(t) is the ambi-
ent channel noise; and Ag, 7%, {bx(3); 1 =0,1,---, M — 1},
and {sx(t); 0 < t < T}, denote, respectively, the received
amplitude, delay, symbol stream, and normalized signaling
waveform of the k-th user. It is assumed that sk(t) is sup-
ported only on the interval [0,7] and has unit energy, and
that {bx(4)} is a collection of independent equiprobable +1
random variables. For the direct-sequence spread-spectrum
(DS-SS) multiple access format, the user signaling wave-



forms are of the form
N-1
sk(t) = Zﬂ; <10(7:_.7'{21)7 te [07T]7 (2)
7=0

where N is the processing gain; (ﬂé’,ﬂf, .- ,ﬂ;ﬁ,_l) is a sig-
nature sequence of +1’s assigned to the k-th user; and pis a
normalized chip waveform of duration T, where NT, = T.

For the sake of simplicity of discussion, we first restrict
our attention to the synchronous case of model (1), in which
71 = T2 = --- = 7k = 0. This does not incur any loss
of generality, as the robust multiuser detection technique
developed for synchronous system can be readily applied
to the asynchronous channels with properly windowed re-
ceived signal. For the synchronous case of model (1), to
demodulate the i-th symbols of the K users, {bx()}5_,, it
is sufficient to consider the received signal during the -th
signaling interval, i.e.,

r(t) = Z Apbr() se(t —iT) +n(t), te€[iT,(i+1)T). (3)

k=1

At the receiver, the received signal r(t) is first filtered by a
chip-matched filter and then sampled at the chip rate. The
resulting discrete-time signal model is given by

r(i) =) Arbu(i) s, + n(d), (4)

where s, 2 [s& - % )% =

S LT s
the normalized signature sequence of the k-th user, and
n(1) 2 [no(d) --- nN_l(i)]T is the channel ambient noise
sample vector at the i-th symbol interval. It is assumed
that the sequence of noise samples {n;(7)} is a sequence
of independent and identically distributed (i.i.d.) random
variables with a non-Gaussian distribution.

In this paper, we adopt the commonly used two-term
Gaussian mixture model for the additive noise samples
{n;(z)}. The probability density function (pdf) of this noise
model has the form

F=1—eN(0,0°) +eN (0,807), (5)

with v > 0, 0 < ¢ <1, and &« > 1. Here the ./\/'(0,1/2)
term represents the nominal background noise, and the
N (0, m/Z) term represents the impulsive component, with
€ representing the probability that impulses occur. It is
usually of interest to study the effects of variation in the
shape of a distribution on the performance of the system,
by varying the parameters ¢ and « with fixed total noise
variance

UZé(l—e)VZ—l—enVZ. (6)

This model serves as an approximation to the more funda-
mental Middleton Class A noise model [4], and has been
used extensively to model physical noise arising in radar
and acoustic channels.

3. ROBUST MULTIUSER DETECTION VIA
M-REGRESSION

3.1. Robust Multiuser Detector
Consider the synchronous signal model (4). For simplicity

we drop the symbol index ¢ and denote 8 2 Apby. Then
(4) can be rewritten as

K
o= Zs;0k+nj7 j=1---,N, (7)

k=1

We consider the problem of estimating the K un-
known parameters 81,0,,---,0k from the N observations
71,72, -+, 7N in (7). Given the estimate 85, the data bits

are then determined according to by = sgn(ék).

Denote 8 2 (0,05 --- GK]T. Here we propose using the
class of M-estimators due to Huber [3] for robust estimation
of 8 in non-Gaussian noise. In this approach, 4 is chosen to
minimize a sum of a function, p, of the residuals,

K

N

j  — : . k

8 = argglélrlil}cz;p 75 ZSJ O | . (8)
5=

k=1

Suppose that p has a derivative 9 = p’, then the solution
to (8) satisfies the implicit equation

K

N
21/1 'rj—Zs;Gk s;-c = 0,
j=1

k=1
or in vector form

STy (r—50) =0y, (10)

where ¥(z) 2 [¥(z1), -, ¥(zx)]T for any z € R¥; § 2

(8,8, - sxls T 2 [r17g --- rn]%, and 0, denotes a K-
dimensional zero vector. The Huber penalty function and
its derivative are given respectively by

2
22 for |z| < kv?
2: _ 27 = ! 11
pu(2) { B2 el forfal > e, (D
=, for |z| < kv?,
va(®) { Fsa(a), forlel> w2, (1Y)

where k, € and v are connected through

Qkv) = ﬁ: (13)

p(kv)
kv

A 1 _=22 A 1 © =2
where ¢(z) = me 7, and Q(z) = E e 2 de.

Equation (9) can be solved iteratively by the modified resid-
ual method [3].




3.2. Simulation Examples

We demonstrate the performance gains achieved by the
robust multiuser detector over the linear decorrelator in
impulsive noise. The noise distribution parameters are
€ = 0.01 and x = 100. The bit error rate versus SNR
for the two detectors is plotted in Figure 1. Also shown in
this figure is the performance of an “approximate” minimax
decorrelating detector, in which the parameter k is taken as
k= %, and the step size parameter p is set as g = . The
reason for studying such an approximate robust detector is
that in practice, it is unlikely that the exact parameters
€ and v in the noise model (5) are known to the receiver.
However, the total noise variance o can be estimated from
the received signal (as discussed in the next section). Hence
if we could set some simple rule for choosing the parame-
ters k [as opposed to calculating it exactly from equation
(13)] and g, then this approximate robust detector is much
easier to implement than the exact one. It is seen from Fig-
ure 1 that the robust decorrelating multiuser detector offers
significant performance gains over the linear decorrelating
detector. Moreover this performance gain increases as the
SNR increases. Another important observation is that the
performance of the robust multiuser detector is insensitive
to the parameters ¢ and % in the noise model, which is evi-
denced by the fact that the performance of the approximate
robust detector is very close to that of the exact robust de-
tector.
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Figure 1.

(SNR) for user 1 for the exact robust detector, an approximate

Probability of error versus signal-to-noise ratio

robust detector and the linear decorrelating detector.

In the next example we consider the performance of the
robust decorrelator in Gaussian noise. Shown in Figure
2 are the bit error rate curves for the robust decorrelator
and the linear decorrelator. It is seen that there is only a
very slight performance degradation by the robust decorre-
lator in Gassian channels, relative to the linear decorrela-
tor, which is the optimal decorrelating detector in Gaussian
noise.

4. BLIND ADAPTIVE ROBUST MULTIUSER
DETECTOR

Throughout this paper, we have assumed that the signature
waveforms of all users are known to the receiver in order to
implement the robust multiuser detectors. One remarkable
feature of the linear multiuser detectors is that there exist
blind techniques that can be used to adapt these detectors,
which allow one to use a linear multiuser detector for a given
user with no knowledge beyond that required for implemen-
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Figure 2. Probability of error versus signal-to-noise ratio
(SNR) for user 1 for the robust decorrelating detector and the
linear decorrelating detector, in a synchronous CDMA channel
with Gaussian noise. N = 31,K = 6. The powers of the inter-
ferers are 10dB above the power of user 1.

tation of the conventional matched-filter detector for that
user.

There are two major approaches to blind adaptive mul-
tiuser detection. In the first approach the received signal is
passed through a linear filter, which is chosen to minimize,
within a constraint, the mean-square value of its output [1].
Adaptation algorithms such as least-mean-squares (LMS)
or recursive-least-squares (RLS) can be applied for updat-
ing the filter weights. Ideally the adaptation will lead the
filter converge to the linear MMSE multiuser detector, irre-
spective of the noise distribution. Therefore this approach
can not be used to adapt the robust multiuser detector,
which is nonlinear in nature.

Another approach to blind multiuser detection is the
subspace-based method proposed in [8], through which both
the linear decorrelating detector and the linear MMSE de-
tector can be obtained blindly. As will be discussed next,
this approach is more fruitful in leading to a blind adaptive
robust multiuser detection method.

4.1. Subspace Concept
Denote A 2 diag(42,---, A%L). Since the data bits of K

users {bk_(z)} are independent +1 random variables, and
they are independent of the noise samples {n(4)}, the auto-
correlation matrix of the received signal (%) in (4) is then

given by
¢ & E{r(i)r(d)"} = SAS" +o°Ly. (14)

By performing an eigendecomposition of the matrix C, we
can write

ngAgT=[gsgn][As A HET] (15)

where U = [U, U], A = diag(A, A,) A, =
diag(A1, -+, Ax) contains the K largest eigenvalues of C
in descending order and U, = [u; -:- uy] contains the cor-
responding orthonormal eigenvectors; A, = a'ZiN_K and
U, =[ug,, --- uy]contains the N — K orthonormal eigen-
vectors that correspond to the eigenvalue ¢?. It is easy to
see that range (S) = range (U,). The range space of U, is

called the signal subspace and its orthogonal complement,



the noise subspace, is spanned by U, . The following re-
sult is instrumental to developing the subspace-based blind
robust multiuser detector.

Proposition 1 Suppose that

K K
D ks, = > Gu,  0ER, ¢ ER. (16)
k=1 j=1
Then we have
K
0 = ax 2; /\f"_s; G, k=1, K, (17)
i=

where ay is a positive constant.

The above result leads to a subspace-based blind robust
multiuser detection technique as follows. From the received
data {r(i)}, we can estimate the signal subspace compo-
nents, i.e., A, U , 0. The received signal r can be ex-
pressed as

r=280+n="U,{+n, (18)

where ¢ 2 [¢1,-- -, Cx]T. Now instead of robustly estimat-
ing the parameters § using the known signature waveforms
S of all users, as is done in the previous section, we can ro-
bustly estimate the parameters { using the estimated signal
subspace coordinates U . Finally, we compute the parame-
ter 8y of the user of interest using (17). Notice that in this
way, to demodulate the k-th user’s data bit bx(), the only
prior knowledge required at the receiver is the signature
waveform of this user, thus the term blind robust multiuser
detector. Notice also that since the columns of U, are or-
thonormal, the modified residual method for updating the
robust estimate of ¢ is given by

-

Y (r-U,¢Y, (19)

= Cl-l-lgz‘gl. (20)
=

z

The computationally efficient sequential eigendecompo-
sition (subspace tracking) algorithms can be employed for
adaptively updating the estimated signal subspace compo-
nents. At the ¢-th symbol interval, after receiving the i-th
data vector r(i), the signal subspace components are up-
dated by the a subspace tracking algorithm. Then the ro-
bust procedure (19), (20) and (17) is invoked to demodulate
the k-th user’s data bit by (7).

4.2. Simulation Examples

As before we consider the synchronous system with K = 6
users and spreading gain N = 31. The noise distribution
parameters are ¢ = 0.01 and ¥ = 100. The powers of all
interferers are 10dB above user 1. The performance of the
blind adaptive robust multiuser detector based on subspace
tracking is shown in Figure 3, where the PASTd algorithm
from [9] is used for tracking the signal subspace parame-
ters. It is seen from this figure that as in the nonadaptive
case, the robust multiuser detector offers significant perfor-
mance gain over the linear multiuser detector in impulsive
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Figure 3. Probability of error versus signal-to-noise ratio
(SNR) for user 1 for the blind robust detector and the blind lin-
ear detector, using subspace tracking, in a synchronous CDMA
channel with non-Gaussian noise. N = 31,K = 6. The powers
of the interferers are 10dB above the power of user 1.

noise. Furthermore, by employing the subspace tracking
technique the blind robust multiuser detector has a practi-
cal computational complexity and incurs no delay in data
demodulation.

5. CONCLUSIONS

In many practical wireless channels in which multiuser de-
tection techniques may be applied, the ambient noise is
likely to have an impulsive component that gives rise to
larger tail probabilities than is predicted by the Gaussian
model. We have proposed a robust multiuser detection tech-
nique that is seen to significantly outperform the linear mul-
tiuser detectors in non-Gaussian ambient noise, in terms of
data detection error probability. This technique is based on
the M-estimation method for robust regression. We have
also developed a subspace-based blind adaptive technique
for implementing the robust multiuser detectors, which re-
quires only the signature waveform of the user of interest in
order to robustly demodulate that user’s data.
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