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ABSTRACT

Cordic based QRD-MVDR adaptive beamforming algo-
rithms possess desirable properties for VLSI implementa-
tion such as regularity and good �nite-word length behav-
ior. But this algorithm su�ers from speed limitation con-
straint due to the presence of recursive operations in the al-
gorithm. In this paper, a �ne-grain pipelined Cordic based
QRD-MVDR adaptive beamforming algorithm is developed
using the matrix lookahead technique. The proposed ar-
chitecture can operate at arbitrarily high sample rates, and
consists of only Givens rotations which can be mapped onto
a Jacobi speci�c dataow processor. It requires a complex-
ity of O(M(p2 + Kp)) Givens rotations per sample time,
where p is the number of antenna elements, K is the num-
ber of look direction constrains, and M is the pipelining
level.

1. INTRODUCTION

QR decomposition based minimum variance distortionless
response (QRD-MVDR) adaptive beamforming algorithm
[1] possess desirable properties for VLSI implementation
such as regularity and good �nite-word length behavior.
However, the speed or sample rates of the algorithm's im-
plementation is limited by time required by the individual
cells. The computation of each cell can't be pipelined to
�ner level (such as bit or mult-bit level) due to the pres-
ence of recursive operations in the cell. In many adaptive
beamforming applications, very high sample rates would be
required, and the QRD-RLS algorithm may not be able to
operate at such high sample rates.
To increase the speed of the QRD-MVDR, lookahead

techniques [2] or block processing techniques [3] can be ap-
plied. The so-called STAR rotation developed in [4] and re-
laxed lookahead technique developed in [5] allow �ne-grain
pipelining with little hardware overhead. However, this is
achieved at the cost of degradation of �ltering performance
due to the approximations in the algorithm. Both algo-
rithms in [4] and [5] are based on multiply-add arithmetic.
Recently, matrix lookahead technique was developed in [6]
to achieve �ne-grain pipelining in QRD-RLS adaptive �lter-
ing. It is an exact lookahead and is based on Cordic arith-
metic. Furthermore, the transformation does not alter algo-
rithm orthogonality, leading to good �nite-word length be-
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havior, which is attractive for VLSI implementation. In this
paper, a �ne-grain pipelined QRD-MVDR adaptive beam-
forming algorithm is developed using the matrix lookahead
technique. The proposed architecture can operate at arbi-
trarily high sample rates, and consists of only Givens ro-
tations which may be mapped onto a Cordic based Jacobi
speci�c dataow processor [7] [8]. The matrix lookahead
transformation, in this paper, is developed in a systematic
way from the block processing point of view which is slightly
di�erent from the derivation in [6], although they bear the
same mathematical roots. Through this derivation, it is
also shown how pipelining and block processing in adaptive
digital �lters are linked by the lookahead transformation.

2. QRD-MVDR ALGORITHM

The minimum variance distortionless response (MVDR)
adaptive beamforming problem may be summarized as fol-
lows. At each sample time instant n, evaluate a posteriori

residual

e(k)(n) = uT (n)w(k)(n) (1)

where u(n) is the p-element vector of signal samples re-
ceived by the array at time instant n, and w(k)(n) is the
p-element vector of weights which minimize the quantity

�(k)(n) = k �(k)(n) k= k A(n)w(k)(n) k; (2)

subject to a linear equality constraint of the form

c(k)
T
w(k)(n) = �(k): (3)

where A(n) =
�
u(1) u(2) � � � u(n)

�T
is the input

data matrix, and c(k) is the kth steering vector which rep-
resents the kth desired look direction, and �(k) is the cor-
responding beamforming gain which is usually a constant.
The solution to this constrained least squares minimiza-

tion problem is given by the following well known formula

w(k)(n) = �(k) ��1(n) c(k)

c(k)
T
��1(n) c(k)

(4)

where � is the covariance matrix de�ned by

�(n) = AT (n)A(n): (5)



Here, we assume all the data are real. The extension to
the complex case is straightforward. Also, for clarity pur-
pose, the forgetting factor in the least squares estimation
formulation is ignored during our discussion.
Assuming that a QR decomposition has been carried out

on the data matrix A(n) so that

Q(n)A(n) =

�
R(n)
0

�
(6)

where R(n) is a p-by-p upper triangular matrix, then it
follows that

�(n) = RT (n)R(n) (7)

and so R(n) is the Cholesky square root factor of the covari-
ance matrix �(n). Equation (4) may therefore be written
in the form

w(k)(n) = �(k) R�1(n)R�T (n) c(k)

c(k)
T
R�1(n)R�T (n) c(k)

= �(k)R
�1(n) a(k)(n)

k a(k)(n) k2
(8)

where

a(k)(n) = R�T (n) c(k): (9)

It follows that the a posterior residual at time instant n is
given by

e(k)(n) = uT (n)w(k)(n) = �(k) u
T (n)R�1(n) a(k)(n)

k a(k)(n) k2
:

(10)

Let

e0
(k)

(n) = uT (n)R�1(n) a(k)(n): (11)

That is e0
(k)

(n) is a scaled version of e(k)(n) with the scaling
factor �(k)= k a(k)(n) k2.
The QR decomposition of the data matrix A(n) can be

implemented in a recursive manner. With each incoming
data sample set, a new row uT (n) is appended to the data
matrix A(n� 1) to yield A(n). A set of p Givens rotations
are determined to null the last row of A(n). Thus the tri-
angular matrix R(n � 1) gets updated to R(n). The QR
update procedure can be described by the following equa-
tion �

R(n)
0Tp

�
= Q(n)

�
R(n� 1)
uT (n)

�
: (12)

After some algebraic manipulations, it can be shown that
the orthogonal matrix Q in (12) also updates the auxiliary

vector a(k) in (9) [1]. Therefore, the QR update for the
MVDR adaptive beamforming algorithm can be summa-
rized as follows.�
R(n) a(k)(n) g(n)

0Tp �(k)(n) (n)

�
= Q(n)

�
R(n� 1) a(k)(n� 1) 0p

uT (n) 0 1

�
(13)

The insertion of the third column in (13) is used to generate

the converting factor (n). The scaled residual e0
(k)

(n) can
be obtained using the following equation [9]

e0
(k)

(n) = ��(k)(n) (n): (14)

An e�cient ow graph representation of the Cordic based
QRD-MVDR adaptive beamforming algorithm is shown in
Fig. 1. In this �gure, the circle and square cells denote
Cordic operations with circle cells operating in vectoring
mode and square cells operating in rotating mode. The cir-
cle cell with right-angle and letter G inside denote a Gaus-
sian rotation. Its functionality is shown in the Figure. The
algorithm complexity is O(p2 + Kp) Givens rotations per
sample time, where p is the size of the antenna array and
K is the number of look direction constraints.
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Figure 1. Flow graph representation of QRD-
MVDR adaptive beamforming algorithm.

3. PIPELINING OF QRD-MVDR

From Fig. 1, we see that the QRD-MVDR algorithm can be
easily pipelined at cell level after applying cut-set pipelin-
ing. The speed or sample rates of the algorithm is, however,
limited by time required by the individual cells. The com-
putation of each cell can't be pipelined at �ner level (such
as bit or multi-bit level) due to the presence of recursive
operations in the cell as described algebraically by (13). In
order to achieve arbitrarily high sample rates, the matrix
lookahead transformation is considered.

3.1. Matrix Lookahead Overview

The matrix lookahead transformation was recently devel-
oped to achieve �ne-grain pipelining in Givens rotation
based recursive least squares adaptive �ltering [6]. It is an
exact lookahead and is based on Cordic arithmetic. One of
the important property of this transformation is that it can
transform an orthogonal sequential recursive algorithm to an
equivalent orthogonal concurrent one by creating additional
concurrency in the algorithm. The resulting transformed al-
gorithm possesses both pipelinability and good �nite word



length behavior which are attractive for VLSI implementa-
tions. The matrix lookahead transformation for Givens ro-
tation based adaptive �ltering algorithms are summarized
in the following two-step procedure.

1. Formulate block updating form of the recursive opera-
tions with block size equal to the pipelining level M .

2. Choose a sequence of Givens rotations to perform the
updating in such a way that it �rst operates on the
block data and then updates the recursive variables.
The aim is to reduce the computational complexity of
a block update inside the feedback loop to the same
complexity as a single-step update.

3.2. Block Processing Formulation of
QRD-MVDR Algorithm

The recursive updating formula for the QRD-MVDR algo-
rithm is given in (13). Its block updating form with block
size M is given as follows

�
R(n) a(k)(n) g(n)

OM�p �(k)(n) (n)

�

= Q(n)

�
R(n �M) a(k)(n�M) 0p

UT
M
(n) 0M �M

�
; (15)

where UTM (n) is an M -by-p matrix de�ned as

UTM(n) =
�
u(n�M + 1) � � � u(n� 1) u(n)

�T
;

OM�p and 0M denote M -by-p null matrix and M -by-1 null
vector, respectively. �(k)(n) and (n) are M -by-1 vectors,
and �M is a M -by-1 constant vector de�ned as

�M = [ 0; � � � ; 0; 1 ]T :

The scaled a posteriori residual e0
(k)

(n) is given as

e0
(k)

(n) = ��(k)T (n) � (n): (16)

The derivations of equations (15) and (16) are omitted here
due to lack of space. Notice that the Q(n) matrix in (15)
is di�erent from the Q(n) in (13), though we use the same
notation here.

3.3. Determination of the Givens Rotation Se-
quence

Now, we determine a sequence of Givens rotations, whose
product form the orthogonal transformation matrix Q(n) in
(15), to annihilate the block input data matrix UTM (n). The
order of the Givens rotations is chosen such that the input
data is pre-processed and block-data update is �nished in
the same complexity as a single-data update. We illustrate
this procedure using a relatively small size example. In
(15), notice that only the upper triangular matrix R(n�M)
and the input data matrix UTM (n) is used to determine the
sequence of Givens rotations. The determined rotations are
then used to update a(k) and generate . Therefore, in
our illustration, only R(n � M) and UTM(n) are included
for clarity purpose. Let p = 4 and M = 3. The block

QR update formula for adaptive MVDR algorithm can be
written as follows

2
666664

r r r r

r r r (n)
r r

r

0 0 0 0
0 0 0 0
0 0 0 0

3
777775
= Q

2
666664

r r r r

r r r (n� 3)
r r

r

u u u u (n� 2)
u u u u (n� 1)
u u u u (n)

3
777775(17)

Let G(i; j) denote a (M + p)-by-(M + p) plane rotation,
which is 7-by-7 in our example.

i j

G(i; j)(n) =

2
664

I
c s

I
�s c

I

3
775

i

j
(18)

A sequence of Givens rotations can be chosen as follows.

G(6; 7) �! G(5; 6) �! G(1; 5) �!
G(6; 7) �! G(5; 6) �! G(2; 5) �!
G(6; 7) �! G(5; 6) �! G(3; 5) �!
G(6; 7) �! G(5; 6) �! G(4; 5)

(19)

Each of the above four rows from top to down annihilates
one column of the data matrix UTM (n) from left to right,
accordingly. In this case, the input data samples are pre-
processed and the r elements are updated only at the last
step. The signal ow graph of a typical r element update
is shown in Fig. 2. Therefore, without increasing the loop
computational complexity, we increase the number of de-
lay elements in the feedback loop from one delay element
to three delay elements. These three delay elements can
then be redistributed around the loop using the retiming

technique [10] to achieve pipelining by 3-level. The two
Cordic processors outside the feedback loop are the compu-
tation overhead due to the lookahead transformation. Since
they are feed-forward, cutset pipelining can be applied to
speed them up. Furthermore, the overhead Cordic proces-
sors outside the loop can be arranged in a tree structure
to explore the parallelism and reduce overall latency. The
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Figure 2. Matrix lookahead transformation.

Givens rotation sequence which leads to the matrix looka-
head transformation is not unique, another candidate may



be

G(6; 7) �! G(5; 6) �! G(6; 7) �!
G(1; 5) �! G(5; 6) �! G(6; 7) �!
G(2; 5) �! G(5; 6) �! G(6; 7) �!
G(3; 5) �! G(5; 6) �! G(4; 5)

(20)

The above sequence corresponds to annihilating the data
matrix UTM(n) in a QR decomposition manner.
The lookahead transformation shown in Fig. 2 can be ex-

ploited either in the form of block processing [3] or pipelin-
ing [2].

D D
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(a) (b)

Figure 3. Serial to parallel conversion for (a) Block
processing and (b) Pipelining.

In a block processing realization of size M , the input
samples are processed in a block manner through a serial-

to-parallel converter shown in Fig. 3(a). Because the input
samples in two consecutive blocks are not overlapped, one
�ltering output is obtained every M sample periods. In or-
der to obtain the rest outputs, either extraM�1 duplicated
operations are needed, which is usually very expensive, or
apply incremental block processing technique to reduce com-
putational complexity [3].
In a pipelined realization, the input samples are also pro-

cessed in the block manner but through a tapped delay line
as shown in Fig. 3(b). In this case, consecutive block sam-
ples are shift{overlapped, thus all �ltering output can be
obtained consecutively. The �nal pipelined QRD-MVDR
adaptive beamforming architecture with pipelining level 3
is shown in Fig. 4. In this �gure, all cell notations fol-
low the notations in Fig. 1 except that they are compound
versions. The internal structure of each compound cell is
shown at the bottom part of Fig. 4. Notice that, compared
to Fig. 1, the 3-level pipelined architecture tripled the num-
ber of Cordic cells and communication bandwidth which is
linear with respect to the pipelining level. Thus, the total
complexity is O(M(p2 +Kp)) Givens rotations per sample
time, where p is the number of antenna elements, K is the
number of look direction constrains, and M is the pipelin-
ing level. The pipelined QRD-MVDR architecture shown
in Fig. 4 can be mapped onto a Cordic based Jacobi speci�c
dataow processor [8].
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