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ABSTRACT

Model error sensitivity is an issue common to all high resolution
direction of arrival estimators. Much attention has been directed
to the design of algorithms for minimum variance estimation tak-
ing only finite sample errors into account. Approaches to reduce
the sensitivity due to array calibration errors have also appeared
in the literature. Herein, a weighted subspace fitting method for a
wide class of array perturbation models is derived. This method
provides minimum variance estimates under the assumption that
the prior distribution of the perturbation model is known. Interest-
ingly enough, the method reduces to the WSF (MODE) estimator
if no model errors are present. On the other hand, when model
errors dominate, the proposed method turns out to be equivalent to
the “model-errors-only subspace fitting method”. Unlike previous
techniques for model errors, the estimator can be implemented us-
ing a two-step procedure if the nominal array is uniform and linear,
and it is also consistent even if the signals are fully correlated.

1. INTRODUCTION

All signal parameter estimation methods in array signal processing
rely on information about the array response, and assume that the
signal wavefronts impinging on the array have perfect spatial co-
herence (e.g., perfect plane waves). Unfortunately, an array cannot
be perfectly calibrated, and analytically derived array responses re-
lying on the array geometry and wave propagation are at best good
approximations. Therefore, the limiting factor in the performance
of array signal processing algorithms is most often not measure-
ment noise, but rather perturbations in the array response model.
Depending on the size of such errors, estimates of the directions
of arrival (DOAs) and the source signals may be significantly de-
graded. A number of studies have been conducted to quantify the
performance degradation due to model errors for both DOA and
signal estimation.

A number of techniques have also been considered for improv-
ing the robustness of array processing algorithms. In one such ap-
proach, the array response is parameterized not only by the DOAs
of the signals, but also by perturbation or “nuisance” parameters
that describe deviations of the response from its nominal value.
These parameters can include, for example, displacements of the
antenna elements from their nominal positions, uncalibrated re-
ceiver gain and phase offsets, etc.. With such a model, a natural
approach is to attempt to estimate the unknown nuisance parame-
ters simultaneously with the signal parameters. Such methods are
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referred to asauto-calibrationtechniques, and have been proposed
by a number of authors (see, e.g., the references in [1]). When
auto-calibration techniques are employed, it is critical to determine
whether both the signal and nuisance parameters are identifiable.
In certain cases they are not; for example, one cannot uniquely es-
timate both DOAs and sensor positions unless of course additional
information is available, such as sources in known locations, cy-
clostationary signals with two or more known cycle frequencies,
or partial information about the phase response of the array. The
identifiability problem can be alleviated if the perturbation param-
eters are assumed to be drawn from some knowna priori distribu-
tion. While this itself represents a form of additional information,
it has the advantage of allowing an optimal maximuma posteri-
ori (MAP) solution to the problem to be formulated [6]. In [6] it
is shown that, by using an asymptotically equivalent approxima-
tion to the resulting MAP criterion, the estimation of the signal
and nuisance parameters can be decoupled, leading to a significant
simplification of the problem. The MAP approach in [6] is asymp-
totically statistically efficient for very general error models. How-
ever, since it is implemented by means ofnoisesubspace fitting
[2], if the sources are highly correlated or closely spaced in angle,
its finite sample performance may be poor. In fact, the method
of [6] is not a consistent estimator of the DOAs if the signals are
perfectly coherent.

In this paper, we develop a statistically efficient weightedsig-
nal subspace fitting (SSF) algorithm that holds for very general
array perturbation models, that has much better finite sample per-
formance than [6] when the signals are highly correlated or closely
spaced, and that yields consistent estimates when coherent sources
are present. An additional advantage of our SSF formulation is that
if the array is nominally uniform and linear, a two-step procedure
similar to that for MODE [3] can be used to eliminate the search
for the DOAs.

2. PROBLEM FORMULATION

Assume that the output of an array ofm sensors is given by the
model

x(t) = A(�;�)s(t) + n(t);

wheres(t) is a complexd-vector containing the emitted signal
waveforms andn(t) is an additive noise vector. The array steering
matrix is defined as

A(�;�) =
�
�a(�1;�) : : : �a(�d;�)

�
;



where�a(�i;�) denotes the array response to a unit waveform as-
sociated with the signal parameter�i (possibly vector valued, al-
though we will specialize to the scalar case). The parameters in
the realn-vector� are used to model the uncertainty in the array
steering matrix. It is assumed thatA(�;�) is known for a nom-
inal value� = �0 and that the columns inA(�;�0) are linearly
independent as long as�i 6= �j ; i 6= j. The model forA(�;�0)
can be obtained for example by physical insight, or it could be the
result of a calibration experiment. One may then have knowledge
about the sensitivity of the nominal response to certain variations
in �, which can be modeled by considering� as a random vector.
Thea priori information is then in the form of a probability distri-
bution which can be used in the design of an estimation algorithm
to make it robust with regard to the model errors.

In this paper we will use a stochastic model for the signals;
more precisely,s(t) is considered to be a zero-mean Gaussian ran-
dom vector with second moments

Efs(t)s�(s)g = P�t;s; Efs(t)sT (s)g = 0;

where (�)� denotes complex conjugate transpose,(�)T denotes
transpose and�t;s is the Kronecker delta. Letd0 denote the rank
of the signal covariance matrixP. Special attention will be given
to cases whered0 < d, i.e., cases in which the signals may be fully
correlated (coherent). In particular, we show that the proposed
method is consistent even under such severe conditions. The noise
is modeled as a zero-mean spatially and temporally white complex
Gaussian vector with second order moments

Efn(t)n�(s)g = �2I�t;s; Efn(t)nT (s)g = 0:
The perturbation parameter vector� is modeled as a Gaussian ran-
dom variable with meanEf�g = �0 and covariance

Ef(�� �0)(�� �0)
T g = 
:

It is assumed that both�0 and
 are known. Similar to [6, 7],
we consider small perturbations in� and more specifically assume
that the effect of the array errors on the estimates of� is of com-
parable size to those due to the finite sample effects of the noise.
To model this, we assume that
 = �
=N; whereN is the number
of samples and�
 is independent ofN . This somewhat artificial
assumption concerning the model errors is made only for conve-
nience in showing the statistical optimality of the algorithm pre-
sented later. An identical result can be obtained for small�� �0
if a first order perturbation analysis is used, but this approach is
somewhat less elegant.

3. GENERALIZED WEIGHTED SUBSPACE FITTING

In [6], the so called MAP-NSF method was derived and shown to
be asymptotically statistically efficient. One drawback with MAP-
NSF is that it is not consistent if the sources are fully correlated,
that is, ifd0 < d. This problem can be overcome in thesignalsub-
space formulation. In this section, we derive a new method in the
signal subspace fitting (SSF) class of algorithms. The method will
be shown to possess the same large sample performance as MAP-
NSF and is thus also asymptotically efficient. A further advantage
of the proposed SSF approach is that the cost function depends
on the parameters in a relatively simple manner and, if the nomi-
nal array is uniform and linear, the non-linear minimization can be
replaced by a rooting technique (see Section 5).

First, let us introduce the eigendecomposition of the sample
covariance matrix

R̂ ,
1

N

NX
t=1

x(t)x�(t) = Ês�̂sÊ
�
s + Ên�̂nÊ

�
n: (1)

Here,�̂s and�̂n are diagonal matrices containing thed0 largest
and, respectively, them�d0 smallest eigenvalues, and̂Es andÊn

are composed of the corresponding eigenvectors.
According to the problem formulation,̂R converges to

R = Efx(t)x�(t)g = A0PA
�
0 + �2I

asN tends to infinity, whereA0 = A(�0;�0), and�0 denotes
the true DOA vector. The eigendecomposition ofR is defined
similar to (1) using a notation without “hats.” This implies that
Ês ! Es = A0T asN ! 1, whereT is ad � d0 full rank
matrix. The idea of the proposed method is to minimize a suitable
norm of the residuals

" = vec(B�(�)Ês);

whereB(�) is anm � (m � d) full rank matrix whose columns
span the null-space ofA�(�), andvec(�) is the vectorization op-
eration. This implies thatB�(�)A(�) = 0 andB�(�0)Es = 0.

Remark 1. For general arrays, there is no known closed form pa-
rameterization ofB in terms of�. However, this will not introduce
any problems since the final criterion can be written as an explicit
function of� (see Section 5 and [1]).

For general array error models, we have to consider the real
and imaginary parts of" separately to get optimal (minimum vari-
ance) performance. Equivalently, we may study" and its complex
conjugate, which we denote by"c.

We propose to estimate the signal parameters� as follows:

�̂ = argmin
�

VGWSF(�); (2)

VGWSF(�) = �"�(�)W�"(�); (3)

where�" =
�
"� "T

��
, andW is a positive definite weighting

matrix. The method will in the sequel be referred to as thegen-
eralized weighted subspace fitting (GWSF)method. To derive the
weighting that leads to minimum variance estimates of�, we need
to compute the residual covariance matrix. As shown in [1], the
(asymptotic) second order moment of the residual vector�" at �0
can be written as

C�" , lim
N!1

N Ef�"�"�g = �L+ �G �G�;

where we have defined

�L =

�
L 0

0 L
c

�
; L =

�
�2 e��2�s 
B�B

�
;

�G =

�
G

G
c

�
; G =

�
T
T 
B�

�
D�

�

1=2

;

and

D� =
h
@a(�;�)
@�1

: : : @a(�;�)
@�n

i
;

a(�;�) =
�
�aT (�1;�) : : : �aT (�d;�)

�T
:



Here, �
1=2 is a (symmetric) square root of�
, e� = �s � �2I,
T = A

y
0Es, and
 denotes Kronecker product. It is easy to see

thatC�" is positive definite sinceL is. It is then well known that
the optimal choice of the weighting in terms of minimizing the
parameter estimation error variance is

WGWSF = C
�1
�" : (4)

The implementation of GWSF is discussed in Section 5. We con-
clude this section with two remarks regarding the GWSF formula-
tion.

Remark 2. If there are no model errors, then GWSF reduces to
the WSF/MODE estimator [5]. This can easily be verified by set-
ting �
 = 0 and rewriting the GWSF criterion(3).

Remark 3. For the case of model errors only (N !1 or �2 !
0), GWSF becomes the “model errors only” algorithm [4]. The re-
sults obtained for GWSF are also consistent with weightings given
in [7] for special array error models.

Thus, the GWSF method can be considered to be optimal in
general, and not just when the model errors and the finite sample
effects are of the same order.

4. PERFORMANCE ANALYSIS

In [1], the asymptotic properties of the GWSF estimates are an-
alyzed. It is shown that the estimates are consistent and have a
limiting Gaussian distribution. It is also shown that the asymptotic
covariance matrix of the estimation error is equal to the CRB for
the problem under study [6, 8]. In summary we have the following
result.

Theorem 1. If d < (m+d0)=2, then the GWSF estimate(2) tends
to �0 w.p.1 asN !1, and

p
N(�̂ � �0) 2 AsN(0; NCRB�);

whereAsN(�) means asymptotically Gaussian distributed, and

CRB� ,
�2

2N

h
C� FT

��
�1
F�

i�1
; (5)

where

C = RefD�
�MD�g;

M = UT 
�?
A;

U = Ay
Es
e�2
�
�1
s E

�
sA

y�;

�
?
A = I�A(A�

A)�1A�;

D� =
h
@a(�;�)
@�1

: : : @a(�;�)
@�d

i
;

F� = RefD�
�MD�g;

� = RefD�
�MD� +

�2

2
�

�1g:

The above expressions are evaluated at�0 and�0.

Notice that the CRB for the case with no model errors is
�2C�1=2N . The result of the theorem is similar to what was de-
rived for the MAP-NSF method in [6]. It implies that GWSF and
MAP-NSF are asymptotically equivalent and efficient for largeN

and small
 (= �
=N ). An advantage of GWSF as compared to
MAP-NSF is that GWSF is consistent even ifP is rank deficient
(d0 < d). Another advantage is that the minimization ofVGWSF(�)
can be performed without a search if the nominal array is uniform
and linear. GWSF can be seen as a generalization of WSF [5] and
MODE [3] that allows one to includea priori knowledge of the
array perturbations into the estimation criterion.

5. IMPLEMENTATION

Here, we only sketch the idea behind the implementation of GWSF
for uniform linear arrays. A detailed description is given in [1].
Define them� (m� d) Toeplitz matrixB as

B
� =

2
66664
bd � � � b1 b0 0 � � � 0

0 bd � � � b1 b0
... 0

...
. ..

...
.. .

...
...

0 : : : 0 bd : : : b1 b0

3
77775 ;

wherefbig are defined by

b0z
d + b1z

d�1 + � � �+ bd = b0

dY
k=1

(z � ej!k); b0 6= 0:

(6)

Here,!k = 2�� sin(�k), where� is the separation between the
sensors measured in wavelengths. The idea is to re-parameterize
the minimization problem in terms of the polynomial coefficients
instead of�. As will be seen below, this leads to a considerable
computational simplification. It is readily verified thatB�A(�) =
0, and since the rank ofB ism� d, it follows that the columns of
B span the null-space ofA�. Observe that�" is linear infbig and,
hence, the minimization in (2) is a quadratic problem for a fixed
W. Schematically, GWSF is implemented in the following steps:

1. Minimize �"��" to get an initial estimate of the polynomial
coefficientsfbig and estimate� from the roots of the poly-
nomial in (6).

2. Compute a consistent estimate of the weighting matrix
WGWSF in (4) based on sample data and�̂ from the first
step. Minimize the quadratic function

�"�WGWSF�"

to get refined estimates offbig and obtain the DOA esti-
mates by rooting the polynomial in (6).

Thus, GWSF can be implemented in a very attractive manner if the
nominal array is uniform and linear. In particular, the solution can
be obtained in a “closed form” by solving two quadratic problems
and rooting the polynomial in (6) (see [1] for the details). There is
no need for an iterative optimization procedure like that necessary
in, for example, MAP-NSF.

6. SIMULATION EXAMPLE

In this section, we illustrate the findings of this paper by means
of a simulation example. MAPprox is an alternative method for
the problem considered in this paper and was first proposed in [8].
A version of MAPprox, MAPprox2, is analyzed in [1]. Below,
the MAP-NSF, MAPprox2 and GWSF methods are compared with
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Figure 1: RMS errors for�1 versus the variance of the uncertainty
in the gain of the sensors.

one another, as well as with methods like WSF/MODE that do not
take the array perturbations into account.

Consider a uniform linear array consisting ofm = 10 sen-
sors separated by a half wavelength. Two signals impinge from
the directions�0 = [0� 5�]T relative to broadside. The signals are
uncorrelated and the SNR is5 dB:P=�2 = 105=10I2: The nom-
inal unit gain sensors are perturbed by additive zero-mean Gaus-
sian random variables. The sample size is fixed toN = 200 and
the variance of the gain uncertainty is varied. In Figure 1, the
RMS errors for�1 are plotted versus the variance of the sensor
gains. (Only the RMS values for�1 are displayed; the results cor-
responding to�2 are similar.) In Figure 1, we show simulation
results using different symbols, while the theoretical results are
displayed by lines. The empirical RMS values are computed from
1000 independent trials. The curve denoted by CRB in Figure 1 is
the Cramér-Rao lower bound for the case with no model errors and
the MAP-CRB refers to (5). The MAP-NSF and MAPprox2 cost
functions are minimized with Newton-type methods initialized by
the WSF estimate. WSF (or, equivalently, MODE [3]) is imple-
mented in the “rooting form” [3]. The GWSF method is imple-
mented as described in [1]. The poor performance of MAP-NSF
in Figure 1 is due to two main reasons. First, and most important,
MAP-NSF fails to resolve the two signals in many cases. Second,
the numerical search is sometimes trapped in a local minima. The
performance of GWSF and MAPprox2 is excellent and close to
the accuracy predicted by the asymptotic analysis. However, the
numerical minimization of the MAPprox2 cost function is compli-
cated. In this example, MAPprox2 produced “outliers” in about
five percent of the 1000 trials. These outliers were removed before
the RMS value for MAPprox2 was calculated. For small model
errors, GWSF and WSF have a similar performance since the fi-
nite sample effects dominate. However, when calibration errors
affect the performance, it can be seen that GWSF and MAPprox2
are significantly better than the standard WSF method. Notice that
GWSF and MAPprox2 begin to differ for large model errors. The
three methods (GWSF, MAPprox2 and MAP-NSF) are known to
be asymptotically efficient estimators for largeN and small model
errors only; the performance for large model errors is not predicted

by the theory in this paper.

7. CONCLUSIONS

This paper has studied the problem of developing robust weighted
signal subspace fitting algorithms for arrays with calibration er-
rors. It was shown that if the second-order statistics of the cali-
bration errors are known, then asymptotically statistically efficient
weightings can be derived for very general perturbation models.
Earlier research had resulted in optimal weightings that were ap-
plicable only for very special cases. The GWSF technique derived
herein unifies earlier work and also enjoys several advantages over
the MAP-NSF approach, another statistically efficient technique
developed for calibration errors. In particular, since GWSF is
based on the signal rather than noise subspace, it is a consistent
estimator even when the signals are perfectly coherent, and has
better finite sample performance than MAP-NSF when the signals
are highly correlated or closely spaced. In addition, unlike MAP-
NSF, when the array is nominally uniform and linear, the GWSF
criterion can be re-parameterized in such a way that the directions
of arrival may be solved for by rooting a polynomial rather than
via a gradient search. Our simulations indicate that, in the pres-
ence of calibration errors with known statistics, both algorithms
can yield a significant performance improvement over techniques
that ignore such errors.
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