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ABSTRACT

Block orthogonal transforms (BOT's) are commonly used
for lots of applications. Conventional BOT's are based on
uniform �lter banks, however, nonuniform BOT's are often
superior to uniform ones. In this research, we investigate
the factorization of nonuniform BOT's which does not in-
volve the tree structure. Therefore, optimal nonuniform
BOT's are available in the sense of transform coding gain.
Some design examples are included to con�rm our theory.
We also apply the nonuniform BOT to the transform image
coding.

1. INTRODUCTION

Block orthogonal transforms have a lot of applications such
as image compression, pattern recognition and so on, and
some BOT's have been reported. Almost all of these trans-
forms divide the signal uniformly in the frequency-domain,
and KLT is optimal in this case. In other hands, BOT's
based on nonuniform �lter banks have been proposed, and
it is shown that nonuiform BOT's have a possibility to out-
perform the conventional uniform BOT's [2]. However, the
proposed nonuniform BOT's in Ref.[2] are not optimal since
the tree structure is involved in constructing them.

In this paper, we are interested in nonuniform BOT's
and investigate how to construct them directly. This direct
factorization has following three advantages over the tree
structure:

1. One can control the characteristic of each �lter directly.
This means that an optimal nonuniform BOT will be
obtained.

2. The number of free parameters increases for some
cases. Actually, it depends on the sampling factor.

3. There are some frequency divisions which are impos-
sible to be implemented by any tree structures, while
they can be constructed by the direct approach [3].

In order to factorize nonuniform BOT's, the transforma-
tion, which reduces a nonuniform �lter bank to an equiva-
lent uniform one, is used. Then we consider how to factorize
this transformed orthogonal matrix. Some design examples
are included to show the validity of our proposed method.
Further, our proposed nonuniform BOT's are tested on the
transform image coding.

2. NONUNIFORM BOT

2.1. Nonuniform BOT and equivalent uniform
BOT
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Figure 1. Nonuniform BOT's implementation
using NUFB.

Fig.1 shows the nonuniform BOT implemented by the
nonuniform �lter bank (NUFB), where qi is a nonnegative
integer. The sampling factor is expressed as [q0 � � � qM�1]
in this paper. The NUFB is assumed to be critically sam-

pled, that is,
PM�1

i=0
1=qi = 1 and all �lters have linear

phase. The lengths of i-th analysis and synthesis �lters are
both qi. Moreover, each synthesis �lter can be written

Fk(z) = z�qk+1Hk(z
�1); k = 0; � � � ;M � 1 (1)

since the �lter bank is orthogonal.

Now let Q be a least common multiple of qi (i =
0; � � � ; M � 1). Fig.1 can be transformed to a Q-channel
uniform �lter bank shown in Fig.2 [2][3]. The analysis �lter
Gk(z) can be expressed as follows:

G
(
P

k

i=0
ri)�rk+uk

(z) = z�ukqkHk(z);

k = 0; � � � ; M � 1 (2)

where rk = Q=qk and uk = 0; 1; � � � ; rk � 1. Thus one can
de�ne a transform matrix of the nonuniform BOT. Natu-
rally, it corresponds to the poly phase component matrix of
Fig.2 and is orthogonal. Unlike the uniform case, it is not a
trivial task to factorize nonuniform BOT's since they have a
special form (the transform matrix contains shifted version
of the same �lter). The transform matrix of [8 8 8 8 4 4] is



G0 (z)

G1( z)

x(n)

Q

GQ−1 (z)

Q

Q

Figure 2. Equivalent uniform �lter bank of Fig.1.

shown below for example:
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The symmetry polarity of each �lter is chosen according
to the corresponding tree structure. The objective of this
research is to factorize the orthogonal matrix such as Eq.(3).

2.2. Coding gain of nonuniform BOT

Transform coding gain is a good criterion to measure the
e�ciency of a orthogonal transform in the context of sig-
nal compression. It's the ratio of the AM to GM of the
variances of the subband signals[1]

GTC =

PM�1
K=0 �

2
yk

M
�QM�1

K=0
�2yk

�1=M (4)

where �2yk denotes the variance of the k-th subband. GTC

in Eq.(4) can be also applicable to any nonuniform BOT's
since they can be transformed to the equivalent Q-channel
uniform BOT's. In this case M in Eq.(4) has to be changed
to Q.

3. FACTORIZATION OF NONUNIFORM BOT

3.1. Factorization

In this section we describe how to factorize nonuniform
BOT's. Only the case where Q is even is considered here
since the size of the uniform BOT is generally even. For a
convenience of the explanation, we concentrate on the sam-
pling factor [8 8 8 8 4 4] whose transform matrix is given in
Eq.(3). We �rst pay attention to the fact that the sum of
5-th and 6-th rows yields a symmetric row and their di�er-
ence produces an anti-symmetric one. Further, the sum of
7-th and 8-th rows yields an anti-symmetric row and their
di�erence produces a symmetric one. Therefore the follow-
ing matrix S0 is multiplied and then, a permutation matrix
P which changes the order of rows is multiplied to obtain
the following transform matrix:
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2
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3
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where A, B and C denote 2� 4 matrices and
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Moreover, B can be written as

p
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Ik and Jk represent identity and counter-identity matri-
ces of size k, respectively. Since PS0T8;6 in Eq.(5) has
a completely same characteristic as uniform BOT, R8 is
multiplied:
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where Ri denotes i� i orthogonal matrix such as

Ri =
1p
2

�
Ii=2 I1=2

Ji=2 �Ji=2

�
: (9)

Thus, the factorization problem becomes �nding two 4� 4
orthogonal matrices D0 and D1. It is well known that
4 � 4 orthogonal matrix can be represented as a product
of six plane rotation matrices. However, the lower half of
D1 coincides with that of D1, namely

p
2B, the rotation

angles have to be the same except for one. Moreover, D0

can be written as:
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where a and b are 1� 2 vectors. D0 can be further decom-
posed as follows:
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where Â is a 2� 4 matrix and 01;2 represents a 1� 2 null
vector. Therefore D0 can be factorized as
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where ci, si denote cos �i and sin �i, respectively, and

S1 =

2
64

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

3
75 :

Although D1 can be parameterized as above, two parame-
ters �1 and �2 should be identical with those ofD0. Accord-
ingly the number of parameters for this nonuniform BOT is
4. From the above discussion, we can summarize that the
transform matrix can be factorized as follows (Fig.3):

T8;6 = S0P
T

�
D0 04
04 D1

�
R

T
8 : (13)

The similar factorization is applicable for other sampling
factor cases.
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Figure 3. Implementation of the nonuniform
BOT.

3.2. Number of free parameters

As we described, the number of parameters (rotation an-
gles) of our proposed BOT's is more than that of BOT's
based on tree structure in some cases. We made a compar-
ison between these for Q = 8 and Q = 10. Tab.1 shows
the results. For the tree structure, some di�erent conbina-
tions of uniform BOT's are possible to construct a nonuni-
form BOT. For example, there are two ways to construct
[8 8 8 8 2], namely harr+4channel uniform BOT and the
combination of harrs. The former has 2 free parameters
while the latter has no free parameters. In the compari-
son, we consider the structure which yeilds the maximum
number of parameters.
From the results, we conjectured that the number of pa-

rameters will increase in the case where M � Q=2 + 2.
The direct approach yields a BOT with better character-
istic even though they have equal number of parameters.

4. SIMULATION RESULTS

4.1. Design examples

We designed the nonuniform BOT whose transform ma-
trix is represented in Eq.(3). Fig.4(a) shows the frequency
response of the BOT for AR(1) (Transform coding gain
was maximized (�1 = 0:95)). The BOT shown in Fig.4(b)
was optimized for AR(2) process with �1 = 0:0, �2 = 0:56
(low+high frequency signal). The nonuniform BOT's based
on tree structure (DCT4+harr) are given in Fig.4(c) and
(d) for the comparison purpose. One can con�rm that the
direct factorization provides better results. Tab.2 shows
the comparison of transform coding gain for AR(1) process
(�1 = 0:95).

Table 1. Comparison of the number of parameters
for Q = 8 and Q = 10.

Q M Sampling factor Direct Tree

8 8 Uniform (KLT) 12 {
8 7 [8 8 8 8 8 8 4] 7 2
8 6 [8 8 8 8 4 4] 4 2
8 5 [8 8 8 8 2],[8 8 4 4 4] 2 2
8 4 [8 8 4 2] 0 0
10 10 Uniform (KLT) 20 {
10 9 [10 10 10 10 10 10 10 10 5] 13 4
10 8 [10 10 10 10 10 10 5 5] 9 4
10 7 [10 10 10 10 5 5 5] 5 4
10 6 [10 10 5 5 5 5] 4 4

[10 10 10 10 10 2]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5

10

Normalized Frequency

M
ag

ni
tu

de
 (

dB
)

(a) (b)

(c) (d)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5

10

Normalized Frequency

M
ag

ni
tu

de
 (

dB
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5

10

Normalized Frequency

M
ag

ni
tu

de
 (

dB
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-20

-15

-10

-5

0

5

10

Normalized Frequency

M
ag

ni
tu

de
 (d

B
)

Figure 4. Frequency responses of the design ex-
amples.

4.2. Application in image coding

Nonuniform BOT's are tested on the transform image cod-
ing. The same transform-based (JPEG-like) coder is used
for all cases. 512 � 512 \Lena" was used as the input im-
age. Especially for low bit rate, proposed BOT improves
the coding performance considerably. The results for com-
pressed at 0.1 bpp are listed in Tab.3. Fig.5 shows zoom-in
portions of the original and reconstructed images.

5. CONCLUSION

In this research we studied the theory and the factorization
of nonuniform BOT's. By using our proposed factorization,
optimal nonuniform BOT's can be obtained in the sense of
transform coding gain. Some design examples imply this
fact. We also apply the nonuniform BOT to the transform
image coding. The results show that the nonuniform BOT
is e�cient in the application. The extension to LOT is left
for the future research.
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Figure 5. Original and reconstructed images. (a)Original image. (b)8-point DCT. (c)6-point
DCT. (d)Nonuniform BOT (Direct Q = 8, M = 6). (e)Nonuniform BOT (DCT4+harr Q = 8,
M = 6). (f)Nonuniform BOT (Direct Q = 8, M = 7).

Table 2. Coding gain comparison (dB).

Direct Tree

Q = 8;M = 7 8.8246 8.3411
Q = 8;M = 6 8.7128 8.3411

DCT8 8.8259 {
KLT8 8.8259 {
DCT6 8.4072 {
KLT6 8.425 {
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Table 3. Coding performance comparison.

PSNR Max Error Taps per
Sample

Q = 8;M = 7 28.04 113 7
(Direct)
Q = 8;M = 7 24.00 222 7
(DCT4+harr)
Q = 8;M = 6 27.89 115 6
(Direct)
Q = 8;M = 6 27.12 132 6
(DCT4+harr)
DCT8 28.03 116 8
DCT6 26.52 136 6


