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ABSTRACT

We propose a new parametric motion model based on
the so-called \trifocal tensor" representation, which cap-
tures rigid 3D motion of static scenes with a depth of
�eld. The estimation of trifocal tensor requires solution
of a set of linear equations given at least seven point
correspondences across three frames. The proposed
parametric representation, called the trilinear model,
is superior to other forms such as translational, a�ne,
perspective, and bilinear models, because it can implic-
itly encode the depth of the scene and 3D motion of the
scene/camera under perspective projection unlike oth-
ers. A video object can thus be represented by its �rst
VOP, a set of trifocal tensors and the corresponding
prediction residues. Motion estimation and compen-
sation based on the new parametric model are incor-
porated into the MPEG-4 Video Veri�cation Model to
compare its e�cacy for object-based video compression
with the state-of-the art motion compensation meth-
ods. Experimental results are provided to demonstrate
the performance of the trilinear model for object-based
video compression.

1. INTRODUCTION

Commonly used 2D parametric motion models, such
as a�ne, perspective, bilinear, cannot accurately rep-
resent the projected 3D rigid motion of arbitrary scenes
with depth of �eld. The 2D translational motion model
can just handle translations within the image plane.
A�ne and perspective models only capture 3D rigid
motion of a planar object under orthographic and per-
spective projections, respectively [1]. Alternatively, the
perspective transformation accurately models the pro-
jected motion due only to rotation of a camera about
its center of projection capturing an arbitrary static
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3D scene. Otherwise, these models provide a reason-
able approximation to the projected motion �eld if the
depth variation of the 3-D scene is much smaller than
its distance from the camera. For unrestricted scene
structure and camera motion, a residual motion �eld
will remain after a plane projective (perspective) map-
ping is applied for motion compensation (with respect
to a reference plane in the reference view). This resid-
ual motion, which can be decomposed into two com-
ponents, one due to scene structure and the other due
to camera translation, is called planar parallax motion
[2]. Clearly, the planar parallax motion analysis does
not lead to a single parametric mapping between two
views.

In this paper, we propose a single parametric map-
ping, called the trilinear model, between three views
that captures rigid 3D motion of static scenes with a
depth of �eld for motion compensation. The trilinear
mapping is derived from the so-called \trifocal tensor"
representation [4, 5]. This leads to a novel 2D paramet-
ric video representation, which captures scene depth
and camera motion by a trifocal tensor (27 parame-
ters per video object) without the need for explicit 3D
structure and motion estimation. The trilinear model,
introduced in Section 2, provides potential for higher
coding e�ciency through smaller residual error if there
is unnegligible depth of �eld in the scene. Estimation of
trifocal tensor requires solution of a set of linear equa-
tions given at least seven point correspondences across
three frames [4]. Motion estimation and compensation
using the trilinear model is discussed in Section 3. The
trilinear motion compensation is implemented within
the MPEG-4 Veri�cation Model (VM) to compare its
e�cacy for object-based video compression with the
other state-of-the-art motion compensation methods
[3]. Experimental results, in Section 4, demonstrate
the superiority of trilinear motion model when there
is depth variation or camera translation motion in the
scene.
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Figure 1: Backward trifocal transfer.

2. TRILINEAR MOTION MODEL

The trifocal tensor extends the notion of the funda-
mental matrix (epipolar geometry) between two views
to three views, and hence implicitly encodes motion
and internal parameters of a camera, and all projective
geometric constraints across three views, that are inde-
pendent of scene structure, by 27 parameters [4, 5]. It
can be represented by a 3� 3� 3 matrix whose entries
are given by

�
jk
i = v0kb

j
i � v00jaki i; j; k = 1; 2; 3 (1)

Interested readers are referred to [4, 5] for details.

Given the trifocal tensor �jk
i across three views  ,

 0 and  00 and the points p and p0 in views  and  0 as
shown in Fig. 1, the process of �nding the correspond-
ing point p00 in view  00 is called the trifocal transfer.
A line l0 in view  0 together with the optical center O0

determines a 3-D plane. A projective line from the �rst
optical center O to an arbitrary point p on the �rst view
 intersects the 3-D plane at P . The intersection of the
line PO00 with the third view  00 determines p00, which
is the transfer of the point p onto view  00. Thus, the
trifocal tensor across three views and the dense motion
�eld between  and  0 are su�cient to perform trifocal
transfer.

Shashua [4] shows that a set of three views provides
four independent trilinear equations. Given the trifocal
tensor �jk

i and the corresponding points p and p0, the
coordinates of the matching point p00 on the third view
 00 can be solved uniquely from these equations in the
noise free case. Since, we have an overdetermined set
of equations, there are various ways of computing p00

using di�erent combination of equations. For example,
taking Eqns. (3) and (4) in [4] results in the trilinear

mapping
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The various ways of computing x00 and y00 (di�erent tri-
linear mapping forms) may result in di�erent trifocal
transfers in the case of noisy image correspondences. It
is possible to choose the optimal form of the trilinear
mapping from a priori knowledge of camera con�gu-
ration and motion. For example, the mapping (2) is
most suitable for dominant motion in the horizontal
direction, such as a camera pan, because this mapping
is based on a vertical line in the view  0 (to determine
the 3D plane); and thus, does not contain y0. Alter-
natively, the optimal mapping can be chosen automat-
ically at each pixel based on a line in the view  0 that
passes through p0 and is orthogonal to the epipolar line
at p0. This, of course, means that the form of the tri-
linear mapping varies from pixel to pixel, but all such
mappings is a function of the same trifocal tensor �jk

i .

3. VIDEO REPRESENTATION AND CODING

This section describes video representation using the
trilinear mapping, estimation of the trifocal tensor across
three views, and motion compensation and background
mosaic generation by the trilinear model.

3.1. Video representation

In MPEG-4, a video sequence is organized into video
objects (VO) and video object planes (VOP). A VOP
is described by its shape, motion and texture. Based
on the trilinear motion model, an N frame VO is rep-
resented by its �rst I-VOP, (N � 1) trifocal tensors,
and the prediction residues which are DCT coded. For
scenes with depth changes which can not be captured
by the translational or a�ne motion model, the trilin-
ear model may result in a smaller prediction residual to
be coded, and hence fewer DCT coe�cients. If the sav-
ings in bit count for coding the residues is more than
the cost of coding the trifocal tensors, higher coding
e�ciency is achieved. This is in general the case when
there is a depth �eld in the scene.

3.2. Motion estimation

Motion estimation in the context of motion compen-
sation by the trilinear model refers to estimating a



dense motion �eld between successive views and es-
timating a set of trifocal tensors �jk

i (n; n � 2; n � 1)
for each frame n. The dense motion �eld can be rep-
resented by either a set of block-based translational
motion vectors, or a set of global a�ne parameters
A(n; n � 1) = fan; bn; cn; dn; en; fng. The block and
a�ne motion parameters are estimated as described in
the MPEG-4 VM [3].

The estimation of the trifocal tensor �jk
i (n; n�2; n�

1) across three VOP's follows the following steps:

� Detect a set of \good features" [6] on the �rst
VOP;

� Track the selected feature points to the following
frame [6]. Eliminate features which are poorly
tracked. Establish feature correspondences across
three frames;

� Randomly select 7 point correspondences from
this set, and recover the trifocal tensor as de-
scribed in [7];

� Apply the trilinear mapping to the feature points
in frame n to transfer them to frame (n � 1).
Count the number of features which are success-
fully reprojected;

� Go to step 3 for a pre-speci�ed number of times
and then choose the trifocal tensor which success-
fully transfers the maximum number of feature
points from frame n to (n� 1).

For the special case of estimation of the trifocal tensor
at the second VOP, a VOP 0 is synthesized by copying
VOP 1 to estimate �jk

i (2; 0; 1).

3.3. Motion compensation

The present procedure computes the dense motion �eld
between frames n and n� 2 using the estimated global
a�ne parameters A(n; n � 1) and A(n � 1; n � 2) as
shown in Fig. 1. This choice is motivated by two ob-
servations: i) Computation of block-based dense mo-
tion vectors is more expensive than estimation of global
a�ne parameters (per object), and ii) Motion compen-
sation by trifocal transfer is not extremely sensitive to
correspondence between points p and p0. The proce-
dure is summarized as:

� Scan every pixel p on current VOP in frame n;

� Find the a�ne warped projection in frame (n�1)
by a�ne transform A(n; n � 1) from frame n to
frame (n�1). Continue to warp the point to p0 in
frame (n�1) by the a�ne transformA(n�1; n�2)
from frame (n�1) to frame (n�2). Thus establish

point correspondence between p in frame n and
p0 in frame (n� 2).

� Find the projected point p00 in frame (n � 1) by
the trilinear mapping (2);

� Interpolate the luminance or chrominance value
at p00 from its 4 neighbors by bilinear interpola-
tion. Copy the interpolated value to the current
frame as the prediction.

The motion compensation is done on both luminance
and chrominance channels.

Motion compensation based on trilinear mapping is
not perfect due to following reasons: First, there are
covered/uncovered regions between three consecutive
views. Second, although the trifocal tensors are re-
covered from the original frames, the current frame is
motion compensated from the previous reconstructed
frame or sprite, which are blurred and lossy versions of
the original frame. Third, the dense motion �eld from
frame n to n � 2 is approximated by concatenation of
two a�ne transfers, from frame n to n� 1, then from
frame n� 1 to n� 2.

3.4. Background mosaic and its update

Background mosaic (sprite) and global a�ne motion
compensation is a standard part of MPEG-4 VM. Back-
ground mosaic representation facilitates high e�ciency
coding [8] for video background. Similar ideas are used
to generate and update sprite, using trifocal transfer
instead of a�ne transfer.

4. EXPERIMENTAL RESULTS

Motion compensation by using the trilinear model has
been implemented within the MPEG-4 VM (MoMuSys
implementation). The bitstream syntax follow exactly
the speci�cations in MPEG-4 VM except that the cod-
ing of trifocal tensors as overhead. At present, we
attach the trifocal tensors to bitstream without any
compression. Every trifocal tensor needs 26 coe�cients
(The 27th coe�cient is set to be 1). Each coe�cient is
represented as a 4 bytes 
oat number. Thus, 832 more
bits per VOP are added to bitstream to represent tri-
focal tensor. These coe�cients could be further com-
pressed by lossless coding to achieve higher e�ciency.

Two coders that employ adaptive switching between
trilinear and block (TB) models; and a�ne and block
(AB) models have been compared with coders that em-
ploy trifocal-only (TO); a�ne-only (AO); and block-
only (BO) models on the background of the video se-
quence \Stefan" with CIF format (352 � 288) from
frame 220 to frame 268. Table 1 demonstrates that



better coding performance can be achieved by using
the trilinear model than by block-matching when there
is enough depth variation and camera translation in
the scene. These coders are also tested on the fore-
ground object of the video sequence \Cyclamen" with
SIF format (352�240) at various sampling rates. Table
2 shows the coding performances where all 300 frames
are used. It is clear that BO coder performs very well
in this case. Table 3 shows results where 60 frames are
sampled at the rate of one out of every 5 frames, and
in this case, the performance of the TO coder catches
up with the BO coder. Table 4 shows the case where
30 frames are sampled at the rate of one out of ev-
ery 10 frames, where TO coder gives the best coding
e�ciency.

Based on these results, it is clear that trifocal mo-
tion model is a powerful model. It is, however, desirable
to incorporate various motion models into a coding sys-
tem such that the coder adapts to scenes by switching
to the best motion model at each pixel to yield the
minimum coding cost.
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Compr- Average PSNR PSNR PSNR
Sys ession Bits/ on Y on U on V

Ratio Frame Channel Channel Channel
TB 30.91 39360 30.81 34.98 34.61
AB 28.18 43169 30.72 34.91 34.62
TO 25.52 47669 30.39 34.48 34.12
AO 24.52 49618 30.45 34.59 34.22
BO 18.43 65990 30.53 34.33 34.06

Table 1: Statistics on \stefan" from frame 220 to 268.

Compr- Average PSNR PSNR PSNR
Sys ession Bits/ on Y on U on V

Ratio Frame Channel Channel Channel
BO 119.48 10181 30.76 33.17 33.86
AB 115.86 10500 30.70 33.18 33.85
TB 103.62 11740 30.58 33.20 33.88
TO 74.29 16375 29.96 32.79 33.25
AO 23.60 51526 29.03 31.16 32.21

Table 2: Comparison statistics on 300 frames of \cyclamen"
from frame 0 to 299.

Compr- Average PSNR PSNR PSNR
Sys ession Bits/ on Y on U on V

Ratio Frame Channel Channel Channel
BO 94.99 12805 30.77 33.39 34.21
AB 92.57 13141 30.72 33.34 34.24
TB 77.46 15703 30.59 33.28 34.22
TO 65.23 18647 29.95 33.04 33.80
AO 24.43 49800 29.30 31.99 32.97

Table 3: Comparison statistics on 60 frames of \cyclamen"
from frame 0 to 299 sampling one out of every �ve frames.

Compr- Average PSNR PSNR PSNR
Sys ession Bits/ on Y on U on V

Ratio Frame Channel Channel Channel
TO 49.45 24597 29.88 32.97 33.67
TB 47.38 25669 30.19 32.95 33.91
AB 32.83 37055 29.88 32.56 33.52
BO 29.18 41690 29.79 32.31 33.23
AO 23.49 51793 29.41 32.12 33.10

Table 4: Statistics on 300 frames of \cyclamen" from frame
0 to 299 sampling one out of every ten frames.


