
A NEW APPROACH FOR REDUCING BLOCKINESS IN DCT IMAGE CODERS

Stephen A. Martucci

Scitex Digital Video
431 Crown Point Circle, Suite 150

Grass Valley, CA 95945

ABSTRACT

This paper presents a new approach for reducing the blocki-
ness that occurs when using DCT image coders at high com-
pression ratios. The method is simply the replacement of the
inverse DCT-2 in the decoder by a larger inverse DCT-1 fol-
lowed by overlapping and averaging of the enlarged blocks
to reconstruct the image. The modified decoder can decode
any bitstream generated by a standard encoder. Blockiness
is reduced but there is no noticeable distortion or loss of
sharpness in the image. There is also no significant increase
in complexity when using this method.

1. INTRODUCTION

Many image and video compression standards, such as JPEG
and MPEG, are based on discrete cosine transform (DCT)
processing. In the JPEG standard, for example, the input
image is first partitioned into nonoverlapping blocks of size
8 � 8. Each block is transformed by the DCT, then the
coefficients are quantized and entropy coded. A decoder
performs the inverse operations in reverse order (entropy
decoding, dequantization, then inverse DCT), to produce a
reconstructed approximation to the original image. Using
the DCT, it is possible to achieve a fair level of compression
without any noticeable artifacts in the reconstructed images.
At higher levels of compression, however, artifacts become
increasingly visible. A particularly disturbing artifact char-
acteristic of DCT compression is blockiness.

Blockiness occurs because each block is independently
transformed and quantized. There is no sharing of image
data between the nonoverlapping blocks. At low to mod-
erate levels of compression this is not a problem, but as
the degree of quantization, and therefore level of compres-
sion, increases, blockiness becomes increasingly visible and
detracting.

Solutions to the problem of blockiness have been re-
ported in the literature [1, 2, 3]. A straightforward way
to reduce blockiness would be to overlap the image data
before the transform. Unfortunately, however, this would
increase the amount of data that must be compressed and
therefore would reduce the level of compression achievable.

Another method is to filter the image after decompression to
remove the high-frequency block edges. Simple filtering of
the entire image, however, has the disadvantage of unwanted
softening of the image. Adaptive filtering restricted to block
boundaries adds significant complexity and can still lead
to some distortions in the image. Methods that adaptively
modify the input image during encoding and then undo those
modifications during decoding work well but add significant
complexity to both encoder and decoder and require that a
matching nonstandard encoder and decoder be used. Iter-
ative restoration and other post-processing techniques can
add substantial complexity and delay.

In this paper we present a novel method of modifying
a block-DCT-based image decoder that is simple to imple-
ment, adds little additional computational complexity, sig-
nificantly reduces blockiness in reconstructed images, and
preserves the ability of the decoder to decode any standard
bitstream. No modifications need to be done to the encoder
or the bitstream. The method is simply the replacement
of the inverse DCT-2 in the decoder by a larger-than-con-
ventional-size inverse DCT-1 and the overlapping of these
larger-than-conventional-size blocks to reconstruct the de-
coded image. As we will show, using the DCT-1 in place of
the DCT-2 has the effect of shifting the pixels by 1/2-sample
in each dimension and enlarging each block by one row
and one column without distorting the data. Because these
blocks can now be overlapped, with averaging done in the
regions of overlap, blockiness can be significantly reduced.
The reduction in blockiness is especially noticeable when
the image is enlarged.

2. THE METHOD

Assume we have received a bitstream, such as that pro-
duced according to the JPEG standard, that represents a
DCT-compressed image of sizeH�V . The steps to decode
the bitstream by our new method are simply the following.
It should be noted that the order of Steps 4 and 5 can be re-
versed and that both steps could be incorporated into Step 3
by a simple modification of the DCT-1 calculation.



1. Perform entropy decoding and dequantization to re-
cover the 2D DCT-2 coefficients of each block of size
8� 8.

2. Append a row and column of zeros to each block to
increase the size to 9� 9.

3. Compute the inverse 2D DCT-1 of each 9 � 9 block
to recover a 9� 9 block of pixels.

4. Scale the elements of the first and last rows of pixels
by
p
2.

5. Scale the elements of the first and last columns of
pixels by

p
2.

6. Reconstruct the image by combining the blocks so that
each block overlaps each neighbor by one row or one
column. Each pixel in a row or column of overlap is
replaced by the average of the overlapping values. At
the four corners of each block, there are four values
that are averaged. For all other overlapping pixels,
there are two values that are averaged.

7. Extract the desired H � V subimage from the size
(H+1)� (V +1) image that resulted from the over-
lapping process.

3. THEORETICAL DISCUSSION

The theory behind our method is best presented in terms of
the recently discovered properties of the DCT. The DCT
used for image compression is just one member of a family
of 16 discrete sine and cosine transforms, collectively called
discrete trigonometric transforms (DTTs). These DTTs can
be used to perform convolution, and therefore digital filter-
ing, but the convolution is a special type called symmetric
convolution. Details of symmetric convolution and its im-
plementation using DTTs can be found in [4, 5, 6].

In order to simplify the notation and discussion, we dis-
cuss the DCTs in one dimension only. Because the trans-
forms are separable, all results extend to two dimensions by
simply applying the properties in each of the two dimensions
consecutively.

The symmetric convolution of two finite sequences is
equivalent to symmetrically extending the first sequence at
both ends, symmetrically extending the second sequence on
the left only, linearly convolving the two, then windowing
the result. The second sequence is a special type, called a
filter-right-half , that the symmetric convolution operation
extends to create a symmetric filter. That symmetric filter
is applied to the first sequence after it has been symmetri-
cally extended at both ends to supply boundary values for
the filtering.

Symmetric convolution can also be implemented by tak-
ing the appropriate inverse DTT of the element-by-element
product of the forward DTTs of the inputs. The DTTs can
therefore be used to implement digital filters where the type

of filtering is that of symmetric convolution. There are
40 distinct types of symmetric convolution and 16 distinct
DTTs. For this work, we use only one type of symmetric
convolution and only two DTTs, the even DCT-1 and the
even DCT-2.

Our method works by using the DCTs to perform a
filtering operation on each block of pixels as it is being
inverse transformed. The filter shifts the pixels of the block
by 1/2-sample in each dimension, but causes practically no
change to the frequency content of the data. In addition,
each block increases in size by one row and one column.
We are effectively filtering the reconstructed pixels x(n),
n = 0; 1; : : : ; N�1, where N = 8, with an even-length
symmetric filter h(n), n = �L=2; : : : ; L=2� 1, whereL =
16, having the frequency response shown in Fig. 1. The
convolution performed is:

w(n) =

L=2�1X
r=�L=2

h(r) ex(n� r)

n = �1; 0; : : : ; N � 1 (1)

where ex(n) is x(n) after half-sample symmetric extension
(i.e., mirror-image reflection with the endpoint repeated) at
both ends to the extent needed for computing the summation.
But this filtering is implicitly performed as a symmetric
convolution using DCTs, as explained next.

For what follows we define the weighting function:

k(p) =

�
1=
p
2 p = 0 orN

1 p = 1; 2; : : : ; N � 1
(2)

The orthogonal form of the even DCT-2 (CIIE) of the se-
quence x(n), n = 0; 1; : : : ; N�1, is what is used for image
compression and is computed according to:

XII(m) = CIIE fx(n)g =r
2

N
k(m)

N�1X
n=0

x(n) cos

�
�m(n+ 1

2
)

N

�

m = 0; 1; : : : ; N � 1 (3)

The orthogonal form of the even DCT-1 (CIE) of the se-
quence y(n), n = 0; 1; : : : ; N , is computed according to:

YI(m) = CIE fy(n)g =r
2

N
k(m)

NX
n=0

k(n) y(n) cos
��mn

N

�
m = 0; 1; : : : ; N (4)

Suppose we are given an even-length symmetric filter
h(n), n = �L=2; : : : ; L=2� 1. We define the filter-right-
half by:

hr(n) =

�
h(n) n = 0; 1; : : : ; L=2� 1
0 n = L=2; : : : ; N � 1

(5)



where L=2 � N . We compute the filter transform co-
efficients using the convolution form of the DCT-2 (C2e)
according to:

Hr(m) = C
2e
fhr(n)g = 2

N�1X
n=0

hr(n) cos

�
�m(n+ 1

2
)

N

�

m = 0; 1; : : : ; N � 1 (6)

Then, we can perform the convolution of (1) using DCTs
according to the following two equations:

YI(m) =

8><
>:

C2efhr(n)g �CIIE fx(n)g
m;n = 0; 1; : : : ; N � 1

0 m = N

(7)

w(n�1) =
1

k(n)
C�1
IE fYI(m)g m;n = 0; 1; : : : ; N (8)

where ‘�’ denotes element-by-element multiplication and
C�1
IE is the inverse orthogonal DCT-1. Notice that x(n) and

theCIIE are of lengthN andw(n) and the C�1
IE are of length

N+1.
We can now analyze, in one dimension, the steps of our

method presented in Section 2. Step 1 recovers the XII(m)
needed by (7); the encoder had performed the DCT-2 and
those (quantized) coefficients are available after Step 1. If we
letHr(m) be a sequence ofN ones, then Step 2 implements
(7) and Steps 3, 4, and 5 implement (8) to compute the
convolution of (1). But because Hr(m) is all ones, the
symmetric convolution is performed implicitly by merely
computing the one-sample-longer inverse DCT-1 of DCT-2
coefficients, followed by scaling of the first and last pixels.

It is important to note that the DCT-2 is an N -point
transform whereas the DCT-1 is an (N+1)-point transform.
The 9-point inverse DCT-1 is actually no more complex
than the 8-point inverse DCT-2. Both transforms can be
computed with 1

2
N log2N or fewer real multiplications and

less than 3

2
N log2N real additions [6], where we are using

N = 8 for both transforms in the steps of Section 2.
Knowing that Hr(m) is equal to a sequence of N ones,

we can compute hr(n) = C�1
2e
fHr(m)g and then symmet-

rically extend on the left to find the effective even-length
symmetric h(n) of length 2N being implemented in (1).
We have done this and have plotted the frequency response
of h(n) in Fig. 1. As can be seen, the filter passes practically
all frequencies with no loss. The only effect of the filter is
to shift the pixels by 1/2-sample and increase the sequence
length by one.

Our method’s effect on the pixel locations can be seen
in Fig. 2. If we assume that we receive a block of 4 � 4
DCT-2 coefficients, the inverse DCT-2 would recover pixels
located at positions of the image marked by a ‘2’. Now, if we
append a row and column of zeros to the block and compute
a 5�5 inverse DCT-1, we would generate interpolated pixels

representing the image at the half-sample positions marked
by a ‘1’. Because we are generating pixels at half-sample
positions, the outermost rows and columns of each block
represent the same positions as those of neighboring blocks.
Therefore, we can overlap the decoded blocks, average the
pixels in the areas of overlap, and thereby greatly reduce the
blockiness artifacts, all without creating any noticeable new
distortions in the image.

4. EXPERIMENTAL RESULTS

To test our new method, we compressed the 256� 256 test
image Lena about 17.5:1 using a standard JPEG encoder.
Then we decoded the bitstream using the standard decoding
algorithm and our new decoding algorithm. Because our
new method creates a 1/2-sample shift in the reconstructed
image, we could not compare it directly to the original Lena.
Instead, we created a shifted version by computing a 256�
256 DCT-2 of the original Lena followed by a 257 � 257
inverse DCT-1 (with scaling) and extraction of the first 256�
256 pixels. This shifts the entire image the same way each
block is shifted by our decoder method.

The PSNR of the standard decoder output compared to
the original is 28.70 dB. The PSNR of our new decoder
output compared to the shifted original is 29.20 dB. The
visual improvement is much greater than the numerical im-
provement, especially when the image is enlarged. In Fig. 3,
we show the enlarged standard JPEG result on the top and
the enlarged new method result on the bottom. The visible
blockiness of the standard result has been virtually elimi-
nated by our new method.

5. CONCLUSION

We have presented a new approach to reducing blockiness in
DCT image coders, whereby we simply replace the inverse
DCT-2 of the decoder with a larger-than-conventional-size
inverse DCT-1, then overlap those decoded blocks to recon-
struct the image. The only effect of changing the DCT type
is a 1/2-sample shift of the pixels. The shift and the overlap
lead to a significant reduction in blockiness. Only the de-
coder is modified; any standard bitstream can be decoded.
Our method is simple to implement and adds little com-
putational complexity because it is an integral part of the
decoder and not a separate post-processing step and because
the DCT-1 has a fast algorithm comparable to the DCT-2.

6. REFERENCES

[1] H. C. Reeves and J. S. Lim, “Reduction of blocking
effects in image coding,” Optical Engineering, vol. 23,
pp. 34–37, Jan./Feb. 1984.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1400

−1200

−1000

−800

−600

−400

−200

0

Normalized frequency (Nyquist == 1)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10

Normalized frequency (Nyquist == 1)

M
ag

ni
tu

de
 R

es
po

ns
e 

(d
B

)

Figure 1. Frequency response of filter effectively being
implemented by our method.

1 1 1 1 1

2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1 1

2 2 2 2

1 1 1 1 1

Figure 2. Sampling pattern for example4�4 block of source
pixels. Each ‘2’ marks the location of a pixel represented by
the DCT-2, each ‘1’ marks the location of a pixel represented
by the DCT-1.

[2] A. Zakhor, “Iterative procedures for reduction of block-
ing effects in transform image coding,” IEEE Trans-
actions on Circuits and Systems for Video Technology,
vol. 2, pp. 91–95, Mar. 1992.

[3] Y. Yang, N. P. Galatsanos, and A. K. Katsaggelos, “Reg-
ularized reconstruction to reduce blocking artifacts of
block discrete cosine transform compressed images,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 3, pp. 421–432, Dec. 1993.

[4] S. A. Martucci, “Digital filtering of images using the
discrete sine or cosine transform,” Optical Engineering,
vol. 35, pp. 119–127, Jan. 1996.

[5] S. A. Martucci, “Symmetric convolution and the discrete
sine and cosine transforms,” IEEE Transactions on Sig-
nal Processing, vol. 42, pp. 1038–1051, May 1994.

[6] S. A. Martucci, Symmetric Convolution and the Dis-
crete Sine and Cosine Transforms: Principles and Ap-
plications. PhD thesis, Georgia Institute of Technology,
1993.

Figure 3. Enlargements of decoded test image Lena. Top is
standard JPEG decoding (PSNR = 28.70 dB). Bottom is our
new method of JPEG decoding (PSNR = 29.20 dB).


