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ABSTRACT

A fast N-step search algorithm for rate-constrained mo-
tion estimation is presented. The motion vectors are se-
lected from a search window based on a rate-distortion
criterion by successively eliminating the search posi-
tions at each step. The performance of the proposed
algorithm is identical to the performance of the conven-
tional rate-constrained N-step search algorithm, with
considerable reduction in computation. Computational
savings increase in parallel with the increases in the
rate constraint and the number of steps.

1. INTRODUCTION

Motion estimation is an essential part of conventional
video coding systems. Motion estimation and com-
pensation techniques are used to remove the tempo-
ral redundancies that exist in video sequences. Block
matching algorithms (BMAs) are commonly used for
motion estimation. The full search BMA is widely used
for motion estimation in video coding. It exhaustively
searches for the best matching block within a search
window and �nds the optimal motion vector that min-
imizes the distortion. The disadvantage of the full
search algorithm is its computational cost. In order
to reduce the computational complexity without de-
grading the estimation performance signi�cantly, var-
ious fast search algorithms have been proposed, such
as the three-step search, the 2-D-logarithm search and
the cross search algorithms [1, 2]. These fast search
algorithms reduce the computational cost by reducing
the number of tested motion vectors at the expense
of the accuracy of the motion estimate. The N-step
search (NSS) algorithm, which is a modi�ed version of
the three-step search algorithm, evaluates the matching
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criterion only at a subset of the candidate MV positions
at each step.

In conventional motion estimation systems the mean
absolute di�erence (MAD) and the mean squared error
(MSE) are commonly used as the matching criteria.
We prefer the MAD as the matching criterion because
it requires no multiplication and gives similar perfor-
mance as the MSE. Motion estimates based on these
matching criteria do not necessarily give the best rate-
distortion (R-D) performance and lead to irregular mo-
tion �elds which in turn lead to an increase in the MV
bit rate. For low bit rate video coding applications, the
MVs take up a substantial amount of the available bit
rate budget. For these severely rate-constrained appli-
cations, optimal bit allocation among the MV rate and
the prediction error rate subject to a rate constraint
becomes an important task [3, 4, 5].

In this paper, we propose a fast rate-constrained N-
step search algorithm which �nds the R-D optimized
MVs by successively eliminating the search positions
at each step of the N-step search algorithm according
to an inequality condition that limits the number of
matching evaluations at each step, similar to the suc-
cessive elimination algorithm of Li and Salari [6], which
was proposed for exhaustive search. The proposed al-
gorithm is based on the N-step search algorithm. The
number of search positions to be tested for a match at
each step is reduced by utilizing the successive elimi-
nation algorithm.

2. R-D OPTIMIZED BMA

In BMAs where no constraint on the MV rate is im-
posed, the motion vector ~d = (dx; dy) is chosen based
on minimizing the distortion. E�cient motion estima-
tion algorithms must minimize MV rate as well as dis-
tortion.
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Figure 1: An example of the proposed NSS (N=3) algo-
rithm. The cost function is �rst evaluated at position
0, then inequality (5) is checked at grid points on 1
until a minimum is found. This procedure repeated on
grids 2 and 3.

Consider a frame which is partitioned intoK blocks.
Let ~dk 2 S be the MV selected for block k. Then MV
�eld assigned to the frame is given by the K-tuple,
D = (~d1; � � � ; ~dK) 2 SK . For inter-frame coding, the
problem of �nding the MV �eld that minimizes the
distortion for a given rate constraint can be formulated
as �nding points on the convex hull of all possible R-D
points which can be found by Lagrangian minimization
[7],

Jmin(�) = min
D2SK

KX
k=1

Dk(~dk) + � Rk(~dk); (1)

where � is the Lagrange multiplier, and Dk and Rk are
the distortion and the number of bits associated with
the MV for block k, respectively. As a result, the cost
function J(�) is used as a matching criterion instead
of the MAD criterion. If each block is coded indepen-
dently, the solution to equation (1) can be reduced to
minimizing the Lagrangian cost function of each block,
i.e.,

Jmin(�) = min
~d2S

Dk(~d) + � Rk(~d): (2)

In most motion estimation algorithms, MVs are dif-
ferentially encoded. Hence, the blocks are not inde-

pendently coded. In order to simplify the problem, al-
though the MVs are coded di�erentially, the blocks will
be treated as if they are being coded independently.

3. PROPOSED ALGORITHM

In this section, we establish an inequality relation to
limit the search process at each step of the N-step
search while preserving the R-D optimized solution for
the motion vector, given the Lagrange multiplier �. N-
step search algorithm operates in a hierarchy of de-
creasing search distances, at each step matching most
closely to one of nine locations (grid points), includ-
ing the origin and the eight neighboring positions. At
each step the distance of the search pixels from the new
center is decreased by one to obtain a �ner-resolution
estimate.

The MV components (dx; dy) can take values �w �
dx; dy � w. Assuming the predicted MV for the current

block is (d̂x; d̂y), the number of bits spent on the MV

for block k is Rk(~d) = � log2 p(dx�d̂x)�log2 p(dy�d̂y)
where p(�) is the probability function of the di�erential
MV components. From the triangle inequality, we ob-
tain

�����

Rz }| {X

~r2Wk

jI(~r; t)j �

M(~d)z }| {X

~r2Wk

jI(~r + ~d; t� 1)j

�����+ � Rk(~d)

�
X

~r2Wk

jI(~r; t)� I(~r + ~d; t� 1)j

| {z }
MAD(~d)

+� Rk(~d) (3)

where I(~r; t) is the intensity at position ~r of frame t.
W is the matching block of size M �M and S is the
search window of size (2w + 1) � (2w + 1). R is the
sum norm of the reference block in the current frame,
whereas,M(~d) is the sum norm of a candidate block in
the previous frame.

Assuming we have a motion vector which yields a
cost function value Jmin(�) =MAD(~dmin)+� Rk(~dmin)
at a position on the grid of the nth step, we should
search for motion vectors with lower cost function value,
i.e.,

���R�M(~d)
���+ � Rk(~d) � Jmin(�); (4)

on the same grid. This leads to the result that we
should only evaluate the cost function at matching po-
sitions which satisfy

R� Jmin(�) �M(~d)� � Rk(~d)

M(~d) + � Rk(~d) � R + Jmin(�) (5)



Table 1: Performance Evaluation of the Proposed NSS Algorithm

� = 0 � = 50 � = 100
N=3 N=4 N=5 N=3 N=4 N=5 N=3 N=4 N=5

Miss America Rate 326.6 336.5 346.7 233.9 234.1 234.6 224.8 225.1 225.3
PSNR (dB) 37.5 37.39 37.36 37.42 37.42 37.38 37.25 37.24 37.21
ANMC 19.5 23.4 26.9 11.0 12.0 12.7 7.4 8.1 8.6

Car phone Rate 395.2 410.1 421.8 306.1 308.8 311.3 283.4 285.6 287.8
PSNR (dB) 31.23 31.24 31.18 31.17 31.19 31.16 31.03 31.04 31.09
ANMC 16.4 19.3 21.8 13.2 14.9 16.3 11.1 12.4 13.5

Suzie Rate 393.2 411.8 420.4 333.8 344.6 348.3 307.1 314.2 315.9
PSNR (dB) 29.60 30.58 30.87 29.53 30.50 30.84 29.40 30.32 30.57
ANMC 19.8 23.7 27.1 16.1 18.8 21.1 14.4 16.6 18.4

Foreman Rate 490.0 563.3 598.9 400.3 447.2 463.5 354.4 387.9 395.4
PSNR (dB) 28.14 28.13 28.07 28.13 28.11 28.10 28.00 28.07 28.08
ANMC 20.4 24.9 28.9 19.1 23.1 26.5 17.8 21.4 24.4

Mthr & Dotr Rate 309.9 317.9 327.6 250.7 253.2 254.8 240.7 242.0 243.43
PSNR (dB) 32.13 32.34 32.46 32.11 32.34 32.48 32.01 32.23 32.39
ANMC 15.9 18.6 20.8 11.4 12.7 13.8 9.6 10.6 11.4

simultaneously on the grid points of the nth step(Figure
1). When these inequalities are satis�ed at a search
position, the cost function is evaluated at that par-
ticular position and if its value is less than the current
value, the cost function value Jmin(�) is updated. This
method progressively con�nes the search space; hence
the solution can be found in fewer matching evalua-
tions at each step. Once the minimum value for the
nth step is found, it becomes the initial minimum cost
function for the next step of the N-step search. This
goes on until the Nth step. Testing the inequalities in
(5) is not computationally demanding compared to the
evaluation of Jmin(�) at each position.

3.1. Computational Complexity

In the evaluation of the inequality (5), for a frame of
size H�W , the sum norms of the reference blocks, R's,
and the matching blocks, M(~d)'s, must be known be-
fore any search can be done. For matching of a single
block, one sum norm must be calculated for the refer-
ence block. This takes M2 � 1 operations. The calcu-
lation of the sum norms of the matching blocks can be
e�ciently performed by the method described in [6]. In
this method, �rst absolute sum norms over a window
of sizeM on the columns of the previous frame is com-
puted, then the sum norms over a window of sizeM on
the resulting rows is computed. This method yields ap-
proximately 4M2 additions per block. This is twice the
number of additions needed to perform a single block
matching evaluation, which is 2M2 � 1 additions. The

total computation overhead for each reference block in-
cluding the computation of the sum norm of the refer-
ence block is approximately 2:5 times the computation
required to perform a single block matching evalua-
tion. In addition to this overhead, there is of course
the computational cost of searching eight positions that
can satisfy inequality (5) at each step. The worst case
computational complexity of the proposed algorithm
becomes approximately 2.5 block matches more than
the conventional NSS algorithm. In an N-step search
algorithm, there are total of (N�8+1) search positions.

3.2. Implementation Issues

The number of bits, R(~d), used to code the di�erential
MVs are computed using the Hu�man table de�ned
in the draft H.261 standard [8] for coding MVs. All

possible � Rk(~d) values are calculated and stored before
the search process begins. The MV prediction is taken
as the median of the previous, above, and the above
right MVs [9]. For each block, the initial cost function
Jmin(�) is chosen as the one which corresponds to the
zero MV. The remaining motion vector positions are
evaluated at the grid positions at each step.

The value of � a�ects the speed of the estimation
process. The � = 0 condition corresponds to the un-
constrained rate case, which �nds the minimumMAD.
As � gets larger, i.e., more rate-constrained, the num-
ber of matching evaluations decreases. The reason for
the decrease in the number of matching evaluations is
that the sum norm surface of a matching block, i.e.,



the values of M(~d) for all search positions, is smoother

than the � Rk(~d) surface. Due to the fact that the

variation of the M(~d)'s is much smaller than the varia-

tion of the the � Rk(~d)'s over the search window, in the

M(~d)� � Rk(~d) term of (5), � Rk(~d) term dominates.

As � gets larger, � Rk(~d) values vary considerably from

the bottom of the surface to the top of the � Rk(~d) sur-
face. If the estimate is an MV which corresponds to the
bottom of the � Rk(~d) surface, not many search posi-
tions where inequality (5) holds can be found. As a
result, the solution can be found in fewer steps.

4. PERFORMANCE EVALUATION

The performance of the proposed algorithm, is studied
using 150 frames of the \Miss America," \Car phone,"
\Suzie," \Foreman," and \Mother & Daughter" QCIF
(176�144) sequences at 10 frames per second, with full
pixel accuracy. Its performance is compared with that
of conventional rate-constrained N-step search (NSS)
algorithm for di�erent N values. The block size is cho-
sen as 16 � 16 for N = 3; 4; 5. The average MV bit
rate, peak-SNR (PSNR) and number of matching cal-
culations per block (ANMC) including the overhead are
used as comparison parameters. These comparisons are
tabulated in Table I.

For conventional rate-constrained NSS algorithm,
the PSNR values and the rate values are exactly the
same as their corresponding values for the proposed
search algorithm. The ANMC values for the conven-
tional algorithm for N = 3; 4; 5 step searches are 25,
33, and 41, respectively. The amount of computational
savings increases as the search region size gets larger,
i.e., as N increases. For example, when � = 0, the
amount of savings for N = 3 is between 20 � 40%,
whereas it is between 25� 50% for N = 5 case. As �
increases, both the number of bits spent on the MVs
and the number of matching evaluations decreases for
the proposed algorithm. This makes it suitable for
low bit rate video applications. For example, when
� = 50, the computational complexity of the proposed
algorithm is computation wise 25� 55% more e�cient
than the conventional rate-constrained NSS algorithm
for N = 3 and 35� 70% more e�cient for N = 5. As
the rate constraint increases further, � = 100, the com-
putational savings increase to 30� 70% for the N = 3
case, 40� 80% for the N = 5 case.

5. CONCLUSIONS

A new fast N-step search block matching algorithm has
been presented for rate-constrained motion estimation.
Experimental results show that the performance of the

proposed algorithm is equivalent to that of the con-
ventional rate-constrained NSS, with lower computa-
tional complexity. The motion vectors are chosen from
a search region based on a rate-distortion criterion.
The number of block matching calculations is reduced
by limiting the matching evaluation positions based on
an inequality condition, which is updated whenever a
motion vector with lower cost function value is found.
As the constraint on the rate increases, the number of
matching evaluations needed to �nd the best motion
vector decreases, and the algorithm becomes faster.
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