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ABSTRACT

In this paper we have two interesting results. One is of
theoretical interest and the other practical. The theoretical
result is that the optimum FIR orthonormal �lter bank of
a �xed �nite degree that maximizes the coding gain does
not always contain an optimum compaction �lter. In other
words, in general, there does not exist a principal compo-
nent �lter bank (PCFB) of a given nonzero degree. This is
sharply in contrast to the cases of transfom coders and ideal
subband coders where the existence of PCFB's are assured
by their very construction. The practical result of the paper
is that constraining the �lter corresponding to the largest
subband variance to be a compaction �lter does not result
in a signi�cant loss of performance for practical input sig-
nals. Since there exist very e�cient methods to design FIR
compaction �lters and since the best completion of the �lter
bank given the �rst �lter is trivially done by a KLT, we see
that this is an exteremely e�cient method despite the fact
that it is suboptimum.

1. INTRODUCTION

There have been important recent developments in the de-
sign of optimal subband coders. With unconstrained �l-
ters, the optimal orthonormal �lter bank problem has been
solved [6, 8, 10] and the biorthogonal case has been under-
stood quite well [1, 11]. If the �lters are order-constrained,
then optimal �lter banks are not known except for the spe-
cial case of two channel �lter banks and for a restricted class
of second order input statistics [3].
Consider an M�channel FIR orthonormal uniform �l-

ter bank shown in Fig. 1. Using the well-known polyphase
representation [9], we can draw this as in Fig. 2 where
E(z) is the polyphase matrix. This can be factorized as
E(z) = UV1(z)V2(z) : : :V�(z) (see Sec. 2 for details).
Moulin et al. [5] proposed the following algorithm for the
optimization of the �lter bank for maximum coding gain:
1) Design the �rst �lter H0(z) to be a compaction �lter [3].

2) Factorize the polyphase vector ey0(z) of H0(z) as e
y
0(z) =

wy0W1(z)W2(z) : : :W�(z) (See Sec. 2 for details). Let
Vn(z) =Wn(z); n = 1; : : : ; �.
3) Choose U to be the KLT for its input vector. The �rst

row of the KLT is necessarily wy0. If not one can increase
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the compaction gain violating the optimal compaction prop-
erty of H0(z).
The authors of [5] use the argument that if one designs a

principal component �lter bank (PCFB) (see Sec. 4 for def-
inition), then it maximizes the coding gain. The �rst �lter
of a PCFB has to be a compaction �lter. Hence the above
algorithm should be optimum. They assume implicitly that
a PCFB exists. If the ideal �lters are allowed, then a PCFB
does exist and it maximizes the coding gain [6, 10]. Simi-
larly if the �lter orders are less than the number of channels,
then the KLT achieves the maximum coding gain and it is
a PCFB. We show in this paper that in the intermediate
case, there does not always exist a PCFB. Hence the above
algorithm is in general suboptimum. Nevertheless, as we
show by some examples in Sec. 5, the suboptimality is not
signi�cant for practical signals. Since the design of FIR
compaction �lters is well studied [3, 4, 7] and there exist
very e�cient algorithms like the window method in [3],
we see that the above method is very e�cient for the design
of signal-adapted FIR orthonormal �lter banks.

2. LESS KNOWN FACTS ABOUT FIR
ORTHONORMAL FILTER BANKS

Consider the FIR �lter bank shown in Fig. 1 and
its polyphase decomposition in Fig. 2 where E(z) =PK

n=0
Enz

�n. Here En's are M � M constant matrices
with EK 6= 0. The number K is called the order of
E(z). Let E(z) be orthonormal or paraunitary. That is,
Ey(ej!)E(ej!) = I; 8!. Let � denote the degree of E(z)
which is the minimum number of delay elements for its im-
plementation. In general we have � � K. It is well known
that E(z) can be factored as [9]

E(z) = UV1(z)V2(z) : : :V�(z) (1)

where U is unitary, Vn(z) = I � vnv
y
n + z�1vnv

y
n; n =

1; : : : ; �, and vn's have unit norm (see Fig. 3). Conversely
any E(z) of the form (1) is FIR orthonormal of degree � as
long as U is unitary and vn's have unit norm.
If we are interested in only one �lter, say H0(z) of the

�lter bank as in the case of compaction problem, we need
to consider only the corresponding row ey0(z) of E(z) whose
elements are the polyphase components of H0(z). Let � be

the degree of ey0(z). Then similar to (1) we can write

ey0(z) = wy0W1(z)W2(z) : : :W�(z) (2)

where Wn(z) = I �wnw
y
n + z�1wnw

y
n; n = 1; : : : ; �, and

the vectors wn; n = 0; : : : ; � have unit norm [9].



2.1. Uniqueness of the factorizations

The factorization of M � M polyphase matrix E(z) of a
given degree � is in general not unique and K � �. The fac-
torization of ey0(z) of degree � is on the other hand unique.

The order of ey0(z) is equal to its degree � [9]. This implies
the following: wynwn+1 6= 0; n = 0; : : : ; � � 1.
Fact. If in the factorization of E(z) in (1), the vectors vn
turn out to be such that vynvn+1 6= 0; n = 1; : : : ; ��1, then
we have K = � and the factorization is unique. Otherwise,
K < � and the factorization is not unique.
Proof. From (1), we can write the highest possible co-

e�cient E� = Uv1v
y
1v2v

y
2 : : :v�v

y
�: Since vynvn+1 6= 0,

and since U is nonsingular, we conclude that E� 6= 0
and therefore K = �. The ith row of E(z) is eyi (z) =

uyiV1(z)V2(z) : : :V�(z). There exists at least one index i,

say i = 0, such that uy0v1 6= 0 (otherwise U has to be sin-

gular). Hence the degree of ey0(z) is �. This implies that
Vn(z)'s are unique. Since U = E(1) is unique, we conclude
that the factorization (1) is indeed unique. If on the other
hand we have vynvn+1 = 0 for some n, then it can be shown
that E0 = (I�v1v

y
1)(I�v2v

y
2) : : : (I�v�v

y
�) has rank less

than M � 1. This implies that the rank reduction [9] can
start with more than one possible vector v�, implying that
the factorization is not unique.
Now, returning to E(z) of degree � and its �rst row ey0(z)
of degree �, assume that � = �. Then by the uniqueness of
the representation (2) it follows that Vn(z) = Wn(z); n =

1; : : : ; �, andw0 = u0 where u
y
0 is the �rst row ofU. There-

fore all the other �lters Hi(z); i = 1; : : : ;M�1 can be deter-
mined by the remaining M � 1 rows of the unitary matrix
U. This is the main observation from [12] that is used by
Moulin et al. [5] to design signal-adapted FIR orthonormal
�lter banks.

3. FIR CODING AND COMPACTION
PROBLEMS

Let x(n) in Fig. 2 be WSS with power spectral density (psd)
matrix Sxx(e

j!). Assume E(z) is FIR orthonormal and let
R(ej!) = Ey(ej!) in Fig. 2. With high-bit rate assump-
tions on the quantization noise sources, and with optimal
bit allocation, the reconstruction error is E = c2�2b�1=M

where [10]

� =

M�1Y
i=0

�2xi =

M�1Y
i=0

Z �

��

h
Ey(ej!)Sxx(e

j!)E(ej!)
i
ii

d!

2�

(3)
Here �2xi is the variance of the ith subband. If x(n) is WSS,

the coding gain is Gcoding =
�2x

(
QM�1

i=0
�2xi

)1=M
=

�2x
�1=M

. By

the orthonormality, �2x =
1
M

PM�1

i=0
�2xi . Let O� denote the

class of M �M FIR orthonormal polyphase matrices with
degree less than or equal to �. The coding problem is the
following:

min
E(z)2O�

M�1Y
i=0

Z �

��

h
Ey(ej!)Sxx(e

j!)E(ej!)
i
ii

d!

2�
(4)

The energy compaction problem, on the other hand, is con-
cerned with making one of the subband variances of an

orthonormal �lter bank as large as possible. If the origi-
nal signal is WSS, then the compaction gain is de�ned as

Gcomp =
maxi (�

2

xi
)

�2x
. Let Q� denote the class of 1 �M FIR

orthonormal polyphase vectors of degree less than or equal
to �. The compaction problem is the following:

max
e0(z)2Q�

Z �

��

ey0(e
j!)Sxx(e

j!)e0(e
j!)

d!

2�
(5)

Considering Fig. 3, the objectives can be written as

min
vn;U

M�1Y
i=0

[URww(0)U
y]ii (coding) (6)

max
vn;u0

uy0Rww(0)u0 (compaction) (7)

where Rww(0) is the autocorrelation matrix of w(n). In the
coding problem, U has to be the KLT for w(n) and in the
compaction problem u0 has to be the unit-norm eigenvector
of Rww(0) corresponding to the maximum eigenvalue. Let
�i's be the eigenvalues of Rww(0). Hence one can rewrite
the problems as:

min
vn

M�1Y
i=0

�i (coding), max
vn

max
i

�i (compaction) (8)

Hence both problems are parametrized by � unit-norm vec-
tors of length M . The total number of free parameters is
therefore �(M � 1). If � = 0, there is nothing to optimize.
In this case E(z) = E0 = U is the KLT for the input vec-

tor x(n) in the coding problem and uy0 is the �rst row of
the KLT in the compaction problem. The matrix U diag-
onalizes Rxx(0), the M �M autocorrelation matrix of the
input. The solution for the case where the �lter orders are
unconstrained has recently been established. We will re-
fer to this case as � = 1, although the degree is formally
unde�ned because the �lters are not causal. The optimum
solution E(ej!) that maximizes the coding gain, diagonal-
izes Sxx(e

j!) at each frequency. This in particular implies
the diagonalization of the autocorrelation matrix Rxx(0)
(which was both necessary and su�cient condition for the
transform coding case). Diagonalization of the psd matrix
at each frequency however, is not su�cient for E(ej!) to
maximize the coding gain [10]. There should be an addi-
tional ordering of the eigenvalues of the psd matrix at each
frequency (spectral majorization) [10]. If x(n) is WSS, then
these eigenvalues are Sxx(e

j(!+i2�=M)); i = 0; : : : ;M � 1.
For the two-channel case and for a restricted class of input
psd, we show in [3] that, if � is the degree of the optimum
FIR �lter bank, then Sxx(e

j!) should be decorrelated and
majorized only at d�=2e discrete frequencies. In [3] we show
how to �nd those frequencies.

4. FIR PRINCIPAL COMPONENT FILTER
BANKS

It turns out that both the KLT (� = 0) and the opti-
mum ideal E(ej!) (� = 1) that minimize � (coding) also
maximize maxi (�

2
xi) (compaction). More is true as they

achieve a fascinating majorization property described as



follows: Let us order the subband variances such that
�2x0 � �2x1 � : : : � �2xM�1 . Among all orthogonal trans-
form coders, the KLT has the property that the partial

sum
PP

i=0
�2xi is maximized for each P = 0; : : : ;M � 1

The same property holds for orthornormal subband coders
with no order constraints (� = 1). That is, for each P ,PP

i=0
�2xi is the largest for the optimal one. Whenever this

happens, we call the �lter bank a principal component
�lter bank (PCFB). In particular, when P = 0, this says
that �2x0 should be maximized by the choice of H0(e

j!).
That is, H0(e

j!) should be an optimum compaction �l-
ter [3, 10].
We show in Sec. 5 that an optimum �lter bank of a

�nite nonzero degree (0 < � < 1) does not satisfy such
a majorization property except in the special two-channel
case. We show this by exhibiting examples where a �lter
bank has the maximum coding gain but none of its �lters
is an optimum compaction �lter. That is, the majorization
property is violated for P = 0. This suggests the following:
Fact. In general, there does not exist an FIR M�channel
PCFB for �nite nonzero degree �.
Proof. Assume on the contrary that there always ex-
ists a PCFB Ep(z) of degree 0 < � < 1. Then for

all E(z) 2 O�,
PP

i=0
�2xi is maximized by Ep(z), for

each P = 0; : : : ;M � 1. This implies two things: �2x0
is maximized by Ep(z) (optimum compaction gain), andQM�1

i=0
�2xi is minimized by Ep(z) (optimum coding gain).

The �rst one is by de�nition (P = 0), while the second
one is due to a well-known result in linear algebra (see
[2, page 199]) that says: given two nonnegative sets of M

numbers, say a0; : : : ; aM�1 and b0; : : : ; bM�1 if
PP

i=0
ai �PP

i=0
bi; P = 0; 1; : : : ;M �1, with equality for P =M �1,

then
QM�1

i=0
ai �

QM�1

i=0
bi. The set a0; : : : ; aM�1 is said to

majorize the set b0; : : : ; bM�1. Hence the set of variances
�2x0 ; : : : ; �

2
xM�1 of Ep(z) majorizes every other set of vari-

ances of E(z) 2 O� and therefore
QM�1

i=0
�2xi is minimized

by Ep(z). So, if a PCFB exists, it solves both optimization
problems. Since we have examples in the rest of the paper
that show that there is no single �lter bank that achieves
both the maximum compaction and coding gains, we con-
clude that a PCFB of a given degree does not always exist.

4.1. A Simple Example

Let the input process be AR(1) with the correlation coe�-
cient of � = 0:9. Let the number of channels be M = 3 and
� = K = 1 Assume that the �lter orders are less than or
equal to N = 4. Note that these are the smallest numbers
for which we can expect to have a counter example. This is
because the coding and compaction problems are the same
if either M = 2 or N < M [3]. Now, since the maximum �l-
ter order is 4, we can write v1 = [cos(�) sin(�) 0]T . Hence
the two problems can be formulated by one single parame-
ter �. Hence we can plot the coding and compaction gains
versus � as in Fig. 5 where we kept the range of � from 0
to �=2. This is because the plots are symmetric with re-
spect to both 0 and �=2. From the plot we see that the
the two problems have di�erent answers. The value of �
that maximizes the coding gain is �coding = 0:1507� where

as �comp = 0:1695� maximizes the compaction gain. For
these choices of �, the coding gains are Gcoding = 3:2176,
andGcoding = 3:2052 respectively and the compaction gains
are Gcomp = 2:7672 and Gcomp = 2:7682. Hence among the
class of orthonormal �lter banks with � = 1 and the max-
imum �lter order N = 4, there does not exist a PCFB. If
it existed, then it would have achieved both the maximum
compaction and coding gains. From the plot, we see that
there is no value of � for which both gains are maximized.

5. EFFICIENCY OF THE SUBOPTIMUM
DESIGN

In the introduction, we have outlined an algorithm pro-
posed by Moulin et al. [5]. They constrain the �rst �lter of
the �lter bank to be an optimum compaction �lter. In the
previous section we have shown an example where this con-
straint resulted in loss of coding gain. Another issue with
the algorithm of [5] is the fact that the optimum compaction
�lter H0(z) is not uniquely determined from its magnitude
square (or the product �lter) jH0(e

j!)j2. Since the latter
can be spectrally factorized in many ways, we see that one
spectral factor may give better coding gain than the others
although they all have the same coding gain. This indeed
turns out to be the case as we show in Example 2. In that
example, we show also that even if one uses the compaction
�lter that has the best phase response (best spectral fac-
tor of jH0(e

j!)j2), one can still increase the coding gain by
brute force optimization of the �lter bank. We want to re-
mark that the coding gain loss due to constraining the �rst
�lter to be optimum compaction �lter is not signi�cant for
most of the practical signals we have considered. Below are
some examples that con�rm this observation.

Example 1. Let us consider the counter example of the
previous section. Let the input be MA(1) instead of AR(1)
with arbitrary correlation. Then one can verify by explic-
itly plotting the coding and compaction gains versus the
parameter � that both achieve the maximum at the same
value of �. This means that the best coding gain is achieved
by designing a compaction �lter �rst. This determines v1
and the �rst row of U. The best �lter bank that maximizes
the coding gain is then obtained by using the KLT for the
output of V1(z). In the previous section, the di�erence
in the coding gains was very small, for this example it is
identically zero.

Example 2. Let the input be MA(1) with r(1) = 0:3. Let
M = 3 and � = 5 so that the maximum �lter order, N � 17.
The best compaction gain is Gcomp = 1:4920 achieved by
the best compaction �lter magnitude response. There are
8 possible phase responses for H0(e

j!) that yield the same
magnitude response jH0(e

j!)j2 (assuming real coe�cients).
Among them there is one �lter that achieves the maximum
coding gain of Gcoding = 1:0944. The minimum phase �lter
has the coding gain of Gcoding = 1:0653 which is worse. By
brute-force optimization, one can �nd a �lter bank that has
the coding gain of Gcoding = 1:0951. This has a compaction
gain of Gcomp = 1:4910, slightly worse than the optimum.
Hence this is an example where the phase response of the
compaction �lter H0(e

j!) does a�ect the coding gain and
even with a best phase, the coding gain is not the maximum
achievable. On the other hand the numerical di�erences are



not signi�cant at all.
Example 3. Let the input be an AR(12) process. Let
M = 8 and the degree � = 5 so that the maximum �l-
ter order N � 47. This is the example where we ob-
tained the most discrepancy between the two solutions.
The coding gain for the suboptimum method of Moulin et
al. is Gcoding = 5:3948. By brute-force optimization of
vectors vn, we �nd that we can achieve a coding gain of
Gcoding = 5:9642. The previous solution has the maximum
compaction gain Gcomp = 5:9190 while the latter solution
has Gcomp = 5:0228.

6. CONCLUSION

In this paper we have seen that the optimum M�channel
FIR orthonormal �lter bank of a given nonzero degree �
does not posses the majorization property that is encoun-
tered both in the transform coding (� = 0) and ideal sub-
band coding (� =1). We have shown that there does not
always exist a principal component �lter bank of a given
degree. If one designs �rst a compaction �lter and then
completes it by a KLT, we have seen that the phase re-
sponse of the compaction �lter has a role. Although these
observations are theoretically important, on the practical
side, we have seen that designing any optimum compaction
�lter and then completing it by a KLT as in [5] results in
very little loss of coding gain.
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