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ABSTRACT

The problem of estimating continuous-time autoregressive
process parameters from discrete-time data is considered.
The basic approach used here is based on replacing the
derivatives in the model by discrete-time di�erences, form-
ing a linear regression and using the least squares method.
It is known, however, that all standard approximations of
the highest order derivative give a biased least squares es-
timate even as the sampling interval tends to zero. Some
of our previous approaches to overcome this problem are
brie
y reviewed. Then two new methods are presented.
One of them, termed bias compensation, can be easily im-
plemented e�ciently in an order recursive manner. Com-
parative simulation results are also presented.

1. INTRODUCTION

Identi�cation of continuous-time models and continuous-
time time series is a problem of considerable importance
in various disciplines such as automatic control, signal pro-
cessing, astrophysics and economics, [1] { [3]. For example,
in economics, since variables in most models are the result
of a large number of microeconomic decisions at di�erent
points of time, they may be regarded as continuous func-
tions of time [1]. Another example is in astrophysics when
modeling sunspot data [3]. Continuous-time autoregressive
(CAR) processes are therefore common. On the other hand,
observations in practice are often made at discrete-time in-
stants. Thus estimation of CAR process parameters from
discrete-time data is a practically important problem.

In this paper, two new algorithms for identi�cation of
CAR models using direct methods is analyzed. In the direct
methods, the derivatives in the CAR model are substituted
by discrete-time di�erences and the model is thus trans-
formed into a (discrete-time) linear regression, parameter-
ized with the CAR parameters. A derivative approxima-
tion of particular interest is the delta approximation which
has received considerable attention in the control and sig-
nal processing literature, see [4]-[6]. The approach used is
the least squares, which is numerically well-behaved, com-
putationally e�cient and amenable to order-recursive im-
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plementations. It is therefore of particular interest to the
signal processing community.

In [7], it was shown that standard approximations such
as repeated use of the forward delta or backward delta op-
erators do not give an estimate which converges to the true
parameter vector as the number of data points goes to in-
�nity and the sampling interval goes to zero. A certain
shift structure needs to be imposed on the highest order
derivative approximation to give an unbiased estimate as
the sampling interval goes to zero, see [7]. These crucial
�ndings are brie
y reviewed and further developed in this
paper. Speci�cally, two new methods coping with the bias
problem caused by the highest order derivative approxima-
tion will be presented. Both methods avoid the shift used in
[7]. Furthermore, in the second method repeated use of the
delta operators is allowed, resulting in computationally ef-
�cient order-recursive algorithms. Simulation results show
that the new least squares methods give smaller bias than
our previous results using the shift structure in [7], at least
for the examples that have been tested.

2. GENERAL SETTING AND PREVIOUS

RESULTS

In this section we set up the problem and review our pre-
vious results. Consider a continuous-time autoregressive
(CAR) process

(pn + a1p
n�1 + � � �+ an)y(t) = e(t)

Ee(t)e(s) = �2�(t� s) (2.1)

where p denotes the di�erentiation operator and e(t) is a
(continuous-time) white noise source. The time series is ob-
served at discrete-time instants t = h; 2h; 3h; � � � ; Nh. The
model order n is supposed to be known. It is of interest to
estimate the autoregressive parameters � = [a1; � � � ; an]

T

from the available discrete-time data.
In the direct approach one would approximate the dif-

ferentiation operator p as

pkf(t) � Dkf(t)
4

=
1

hk

X
j

�k;jf(t+ jh) (2.2)

where f�k;jg are some weights. The natural conditions en-
suring Dkf(t) = pkf(t) + O(h) must be imposed and are



given by

X
j

�k;jj
� =

�
0 � = 0; � � � ; k � 1
k! � = k

(2.3)

These conditions are satis�ed, for example, by using � and

�b approximations where � = q�1

h
and �b = 1�q�1

h
with

qf(t) = f(t+1) and q�1f(t) = f(t� 1). After substituting
derivatives by approximations in (2.1), the following model
can be constructed

w(t) = 'T (t)�+ "(t)

w(t) = Dny(t) (2.4)

'T (t) = [�Dn�1y(t); � � � ; �D0y(t)]

where �(t) is an equation error. This model can be viewed
as a (discrete-time) linear regression. Thus the standard
least-squares method can be applied. The corresponding
normal equation is

[E'(t)'T (t)]� = [E'(t)w(t)] (2.5)

and therefore the parameters are estimated by

�̂N = [
X
t

'(t)'T (t)]�1[
X
t

'(t)w(t)] (2.6)

We will consider the asymptotic case when the number of
data, N , tends to in�nity (�̂N ! �̂). It is shown in [7] that
the least-squares estimate of (2.6) will be biased even as the
sampling interval tends to zero. A derivative approximation
method which solves the bias problem is derived in [7] and
is presented in the following lemma.

Lemma 2.1. Let the weights f�k;jg satisfy the natural
conditions (2.3), and in additionX

j

�n�1;j
X
`

�n;`[j`� jj2n�1 � (`� j)2n�1] = 0 (2.7)

Then
�̂ = � +O(h) (2.8)

for arbitrary CAR process parameters �. 2

The condition (2.7) can be satis�ed if

` � j (2.9)

holds. This means that all measurements used when form-
ing Dny(t) should be more recent than those used when
forming Dn�1y(t). A solution to the bias problem is there-
fore obtained in [7] by shifting the data when approximating
pny(t).

The shift structure of (2.9) has some drawbacks. Firstly,
a large span of data is needed by (2.9) which increases the
\end e�ect" for a �nite data set and reduces its e�ective
length. Secondly, in calculating the correlations between
Dny(t) and Dn�1y(t) , that of the previous stage can not be
used due to (2.9). This increases the computational burden.
In the next two sections, the least squares approach will
be further developed to overcome this shift requirement to
achieve better and faster algorithms for CAR parameter
estimation.

3. BIAS REMOVAL WITH NO SHIFT

Assuming the order n is known, to avoid the shift one needs
to go back to (2.7) and (2.3). The idea is to choose �n;`
with a minimal enlarged time span from that of �n�1 such
that (2.3) and (2.7) are satis�ed, instead of imposing (2.9).
To choose �1; �2; � � � ; �n�1 which satisfy (2.3) is easy. For
example, repeated use of the � or �b operators will do. The
time span is minimal using � or �b, and is i+ 1 samples for
�i. Once �n�1 is chosen, (2.3) and (2.7) for �n form a set of
n+ 2 linear equations. Thus using n+ 2 elements, instead
of the minimum number n + 1 for the � or �b operator, in
�n one can solve for �n uniquely. Since no shift is required
here, one can add one more sample to both ends of �n�1
to form the time span for �n, thus achieving a minimal
total time span and maximal symmetry. We then have the
following algorithm.

Algorithm 1:

1. Choose i + 1 elements of �i that satisfy (2.3), i =
0; 1; � � � ; n � 1.

2. Choose n+2 elements of �n to satisfy (2.3) and (2.7).

3. Solve the normal equation (2.5) or (2.6), using for
example the recursive procedure of [7].

The following example illustrates this method.
Example 3.1 Consider the second order case and using

the � operator. It is obvious that �1;0 = �1 and �1;1 = 1.
To �nd �2, (2.3) and (2.7) give2
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(3.1) gives a unique solution for �2, which is listed in Table
1 together with �1 and �0. 2

j -1 0 1 2
�0;j 0 1 0 0
�1;j 0 -1 1 0
�2;j -0.25 1.75 -2.75 1.25

Table 1: Weights of derivative approximations, 2nd order,
no shift

4. BIAS REMOVAL BY COMPENSATION

Another possible approach in circumventing the bias prob-
lem while avoiding the shift (2.9) is to ignore the require-
ment (2.7) in solving the normal equation (2.6), and to com-
pensate the bias afterwards, again assuming that the order
n is known. Ignoring (2.7), the only requirement then is
(2.3), which is satis�ed by, for example, the � or �b op-
erators. Under this condition the normal equation (2.5) or
(2.6) is exactly the same as that of [4] and [5]. Therefore the
Levinson-type recursions of [4] and [5] can be immediately
applied. With the � or �b operators �

iy(t), for example, can
be recursively calculated from �i�1y(t), whereas in general
Diy(t) can not be obtained from Di�1y(t). Therefore, the



application of [4] and [5] in this proposed approach yields
the most computationally e�cient algorithm in CAR pa-
rameter estimation.

The price for such computational e�ciency is of course
the bias in the resulting parameter estimate as studied in
[7]. Condition (2.7) or (2.9) and the increased computation
as used in [7] are precisely designed to correct this bias.
Now we show that this bias can also be easily compensated
by a simple scaling. To this end we need to analyze the
generic matrix element in (2.5).

Lemma 4.1. Under the natural conditions (2.3) the
following holds for a CAR(n) process.

EfDiy(t)Djy(t)g = (�1)i�1pi+jr(0+) + O(h)

i = 0; � � � ; n� 1; j = 0; � � � ; n; i+ j < 2n� 1 (4.1)

EfDn�1y(t)Dny(t)g

= �n(�1)
n�1p2n�1r(0+) +O(h) (4.2)

where

�n =
(�1)n�1

(2n � 1)!

X
`

X
m

�n;`�n�1;mj`�mj2n�1 (4.3)

and pkr(0+) denotes the k:th derivative of the covariance
function r(�) at � = 0+. In addition,

p2k�1r(0+) = 0; k = 1; � � � ; n� 1 (4.4)

2

See [8] for a proof. As a consequence, we can (for h! 0)
write the normal equation (2.5) as2

6664
(�1)n�1p2n�2r(0+) � � �

(�1)n�1p2n�3r(0+)
...

... �p2r(0+) p1r(0+)
�p1r(0+) p0r(0+)

3
7775 �

=

2
664

�n(�1)
np2n�1r(0+)

(�1)n�1p2n�2r(0+)
...

(�1)1p2n�nr(0+)

3
775 (4.5)

In case �n = 1, there would be no bias, as due to the
continuous-time Yule-Walker equation

(pn + a1p
n�1 + � � � + an)r(�) = 0 for � > 0 (4.6)

Note that �n = 1 for all n if (2.7) is satis�ed. Otherwise
�n 6= 1, and the solution to (4.5) will have a bias.

Observe that �n is the only factor in (4.5) that causes
the bias. Thus one way to eliminate the bias is to scale
the �rst entry of the right hand side vector of (4.5) or (2.5)
before solving them. But this is not a computationally ef-
�cient approach. Thus let us further observe that every
other entry in (4.5) is zero due to (4.4). Thus (4.5) can be
decomposed into two subsystems as2

4 p2n�2r(0+) p2n�4r(0+) � � �
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4 p2n�2r(0+)

p2n�4r(0+)
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3
5 (4.8)

Obviously the even indexed a's are not biased, and all odd
indexed a's are biased by the same factor �n. As �n can be
precalculated, it is easy to scale the odd indexed a's after
they are obtained from (4.7) or (4.5) by the factor 1=�n to
remove the bias. Therefore for h > 0 one can correspond-
ingly solve �̂N from (2.6) with only the natural condition
(2.3) imposed, and scale the odd indexed a's afterwards
to achieve O(h) accuracy without additional bias. For il-
lustration, we display in Table 2 the numerical values of
�n for n = 1; � � � ; 10 when the forward delta operator is
used. The following algorithm, which is based on [4] us-
ing the �-operator, therefore gives computationally e�cient
and asymptotically unbiased estimates:

Algorithm 2:

Data Generation:

�iy(t) =
1

�
[�i�1y(t+ 1)� �i�1y(t)]; i = 1; 2; � � �

Initialization:

a0 = 1; ~
0 = �
1

�2
; ~�0 =

1

N
�ty

2(t);

~�0 =
1

N
�ty(t)�y(t) +

~�0
�

~
1 =
~�0
~�0

; a1 = [ 1;
1

�
(1��~
1) ]

T

For i = 1; 2; � � � ; n� 1:

~�i =
1

N
�ty(t)[ �

i+1y(t); � � � ; �y(t) ]ai

~�i =
1

N
�t�

iy(t)[ �iy(t); � � � ; y(t) ]ai

~
i+1 =
~�i
~�i

ai+1 =

�
ai
0

�
+

1

�
(1 +

~
i+1
�~
i

)

�
0
ai

�

�
~�i

�~�i�1

 
�

"
0

ai�1
0

#
+

"
0
0

ai�1

#!

Finalization:

�̂N =

�
0
... diagf

1

�n
; 1;

1

�n
; 1; � � � g

�
an



n 1 2 3 4 5
�n 1 2/3 0.55 0.4794 0.4304
n 6 7 8 9 10
�n 0.3939 0.3654 0.3422 0.3230 0.3067

Table 2: Values of �n for the forward delta approximation

5. SIMULATION EXAMPLE

In this section the two new LS approaches that remove the
bias problem are compared with the LS shift method of [7]
in a simulation study using the forward delta approxima-
tion. Data were generated after (instantaneously) sampling
a second order AR process as given in (2.1) with n = 2 and
�2 = 1. Both a1 and a2 were equal to 2. The two param-
eters were estimated using N = 10000 data points. Each
trial was repeated 100 times. The number of data points
was chosen relatively large in order to emphasize the bias
e�ect. The numerical �ndings are displayed in Figures 1
and 2 where the theoretical values of the estimates, which
are obtained by solving the corresponding normal equations
for a �xed h and N ! 1, are also plotted. The standard
deviations of the estimates are shown by vertical lines. Note
that for N = 10000 the \end e�ects" are negligible. It is
interesting, however, that the two new approaches of this
paper still give smaller bias than the shift approach of [7].
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Figure 1: Experimental(*) and theoretical(o) estimates for
a1 = 2 with various h. (a) With Shift; (b) Algorithm 1; (c)
Algorithm 2.
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Figure 2: Experimental(*) and theoretical(o) estimates for
a2 = 2 with various h. (a) With Shift; (b) Algorithm 1; (c)
Algorithm 2.
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