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ABSTRACT

We present a globally stable arbitrary-order single-bit delta-sigma
modulator architecture with continuous-time loop filtering. Us-
ing Lyapunov arguments and themethod of equivalent control,
it is shown that stability is guaranteed for any input signal with
peak magnitude less thanL > 0, where�L and+L denote the
quantization levels. The design augments the conventional delta-
sigma modulator with switching feedback and the use of distinct
operating modes; the additional circuitry required for the imple-
mentation of these stabilizing measures is nominal. For a given
noise transfer function and fixed oversampling ratio, the new ar-
chitecture achieves the same peak signal-to-noise-plus-distortion
ratio as a traditional delta-sigma modulator. The proposed design
can also yield near-peak performance for inputs which destabilize
the conventional delta-sigma data converter. Simulation results are
provided for the proposed modulator and a comparable standard
interpolative design.

1. INTRODUCTION

Delta-sigma modulators are processing elements which use feed-
back and oversampling to yield low-cost, high-resolution digiti-
zation of analog signals [8]. A conventional design is shown in
Figure 1. Although the quantizer,Q(�),1 is single-bit, the spectral
resolution of the digital output can be up to twenty bits at practical
sampling rates,1

Ts
[7].

Despite extensive use in commercial applications, the stabil-
ity of high-performance delta-sigma modulators cannot be guar-
anteed or characterized except in special cases. Rigorous analysis
methods for converters based on aggressive noise transfer func-
tions only exist for loop filter orders of up to three [10] [1]. While
a more general stability test is available, it is often too conserva-
tive to be of practical value [2]. To mitigate the effects of instabil-
ity, designers incorporate integrator reset or state-variable limiting
tactics [3] which, although temporarily effective, can significantly
degrade performance. Multi-bit oversampled converters are more

1We use the following quantizer and sgn(�) definitions throughout the
paper:

Q[�(t)] := L sgn
�
�

��
t

Ts

�
Ts

��
; L > 0;

sgn(a) :=

�
+1 ; a � 0
�1 ; a < 0

in which bac denotes the greatest integer less thana 2 R.

H
−

+
analog
input
signal

loop
filter

output
digitalr e σ y

Q(

sT

.)

Figure 1: Conventional delta-sigma modulator.Ts denotes the
sampling interval,e and� represent the scalar loop filter input
and output.

robust2 than conventional single-bit modulators, but imperfections
in the feedback digital-to-analog converter often require expensive
supplemental circuitry to improve integral linearity [5] [4].

In this paper, we describe a novel single-bit modulator which
achieves the same peak performance as conventional designs based
on the same noise transfer function. Stability is shown rigorously
through the methods of nonlinear control [9]. To prevent quantizer
overload,3 the loop filter state is smoothlydriven towards the ori-
gin using appropriate feedback. The use of two-level quantization
ensures that converter linearity is preserved and helps minimize
circuit complexity.

2. DESCRIPTION OF NEW ARCHITECTURE

A modulator is stable if, given a finite bound on the input signal,
all loop filter states are bounded such that quantizer overload can-
not occur. It isgloballystable if it is stable for any initial loop filter
state within a suitably defined set containing the origin.4 The pro-
posed design is globally stable; a condensed version of the proof
is given in the Appendix. Stability is ensured through the use of
adaptation on the loop filter,H, according to specific rules based
on the signs of the elements of the loop filter state,x 2 R

n , and
quantizer input signal,� 2 R. Adaptation refers to the use of
memoryless, switching feedback; each integrator within the loop
filter has an associated feedback gain which can switch between
a finite number of discrete values. A block diagram outlining the

2Strictly speaking, the use of multilevel quantization does notguaran-
teestability, however.

3Quantizer overloadoccurs if the input to the quantizer is outside the
quantization levels.

4The set is defined as
1 = fx 2 R
n : j�j < �g in which � is less

than or equal to the magnitude of the quantization levels.x 2 R
n is the

loop filter state, and� is the quantizer input, as in Figure 2.



design is shown in Figure 2. A more detailed “practical version”
of the design is shown in Figure 3. The topology of the adaptive
loop filter,H, is shown in Figure 4, with the adjustable feedback
gains,ki, given by Equation (9). The net effect of tuningH is the
generation of a stabilizing state feedback signal entering the sum-
ming junction along withr and�y of the formK(x; �)x, in which
K is a1 � n matrix whose entries depend on the signs of� and
the elements ofx and rough estimates of the magnitudes of these
variables (for which the coarse analog-to-digital converter (ADC)
in Figure 3 is used).

In the practical version of the design, the mode selection cir-
cuitry is preceded by an analog multiplexor which feeds a coarse
(three- or four-bit) ADC, for which a simplesuccessive approxi-
mationor algorithmicdesign should suffice [8, Chapter 13]. The
converter and memory are required to roughly estimate the size
of � and state magnitude in order to determine the appropriate
switching mode.
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Figure 2: Proposed (idealized) stable delta-sigma modulator archi-
tecture. Bold lines indicate buses.x denotes the loop filter state
vector and sgn(�) the element-wise sign function.Mode Selection
andSwitchingLogic are given by Equations (7)-(9).
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Figure 3: Hardware-implementable version of proposed modulator
architecture. A multiplexor is used to replace the comparator bank
implied by Figure 2 with a single comparator. A clock signal at a
fraction,0 < m < 1, of the sampling period may be required to
ensure robust operation.

2.1. Operation

The modulator has three distinct operating modes: “no-switching,”
“mild-switching,” and “hard-switching.” Each switching mode
corresponds to the size of the state vector and output of the loop
filter. In some neighbourhood aboutx = 0, all feedback gainski
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Figure 4: Loop filter topology (all nominal poles ofH are at dc
in this case).�0 represents the1 � n output matrix of the loop
filter state-space model. Theki feedbacks are switchable gains;
explicit formulas are given in Equation (9). Thexi states denote
elements of the vectorx. Switching is based on thesigns, and not
magnitudes, of� and the elements ofx.

are set to zero, thus the system reduces to a conventional modula-
tor. Further from the origin, within a user-selected region,5 hard-
switching is used. This mode guarantees that the loop filter state
returns to the origin along a trajectory which ensures thatj�j (the
magnitude of the input to the quantizer) is monotonically decreas-
ing. Mild-switching is hard-switching withK(x; �) scaled-down
in magnitude (and often close to zero). This mode empirically
improves the robustness of the scheme without degrading perfor-
mance.

3. SIMULATIONS
We compare the proposed delta-sigma modulator with a conven-
tional single-bit design using the standard criteria of resolution and
robustness with respect to a sinusoidal input signal of varying am-
plitude at a frequency ofFB

2
. FB represents the edge of the signal

band determined by the sampling frequency,Fs = 1 Hz, and an
oversampling ratio of 128. Throughout this section,FB = 1

256

Hz. Performance is measured in terms of signal-to-noise-plus-
distortion ratio (S(N+D)R) in units of dB. FFTs of up to 16384
points are used to obtain the spectra.

Both modulator types are based on the same noise transfer
function (NTF); thus the loop filter of the conventional modula-
tor is identical to thenominalloop filter of the new architecture. In
these studies,j�j = 1, so that the expected stable input range for
the new modulator is the set of all input amplitudes on the open
interval(�1; 1).

Butterworth discrete-time noise transfer functions of at least
fourth-order are designed according to the “Cookbook Design Pro-
cedure” in [1, Section 4.4]. These filters are mapped to continuous-
time using a transformation based on zero-order hold. All simu-
lations are written inC and driven by a fourth-order Runge-Kutta
numerical integration algorithm.

Fourth- and fifth-order Butterworth noise transfer functions
are used with maximum gains of 1.56 and 1.70, respectively. The
corresponding nominal loop filters are

H10(s) =
0:776s3 + 0:338s2 + 0:0890s + 0:0119

s4
(1)

and

H20(s) =
0:845s4 + 0:409s3 + 0:127s2 + 0:025s + 0:0024

s5
:

(2)

5A detailed definition of this set is given in the proof. The region can be
defined so that as long as the loop filter state is within it, quantizer overload
does not occur.



Table 1: Summary of Performance with Fourth-Order NTF

Input
Signal

Amplitude

S(N+D)R
of

Standard
Modulator

S(N+D)R
of

Proposed
Modulator

0.9 unstable 30.6 dB
0.6 unstable 33.3 dB
0.56 unstable 90.4 dB
0.55 unstable 91.5 dB
0.54 92.3 dB 91.2 dB
0.3 86.8 dB 84.3 dB
0.1 74.0 dB 75.1 dB

Table 2: Summary of Performance with Fifth-Order NTF

Input
Signal

Amplitude

S(N+D)R
of

Standard
Modulator

S(N+D)R
of

Proposed
Modulator

0.4 unstable 29.6 dB
0.37 unstable 45.8 dB
0.36 86.2 dB 85.8 dB

0.3525 unstable 84.2 dB
0.35 87.9 dB 87.6 dB
0.25 85.6 dB 83.1 dB

Outcomes for each loop filter are shown in Tables 1 and 2. The
results confirm that the new architecture is more robust than the
conventional. Resolutions of up to 15 bits are obtained in cases
where the conventional modulator fails to function. Simulations
show that, as predicted by theory, the new modulator operates over
the entire input amplitude range of[0; 1), whereas the stable op-
erating range of the conventional design cannot be determined a
priori. A representative peak performance plot for the new archi-
tecture is shown in Figure 5. Peak performance in the new ar-
chitecture can be obtained even if the conventional modulator is
unstable. Frequent hard-switching in the new scheme reduces the
S(N+D)R since “switching noise” enters the signal band.

4. APPENDIX - STABILITY PROOF
Theorem 1 (Stability of Proposed Modulator) Consider the ide-
alized modulator system (Figure 2)6 with loop filterH shown as
in Figure 4 in which

� t denotes time, with initial timet = 0,

� Ts is the sampling period,

� r, e, � andy are real scalar signals,

� x 2 Rn is the loop filter state,

6Please note that during the hard-switching mode, for convenience we
model the latched quantizer in Figure 2 as a sgn(�) nonlinearity. As long
asTs is sufficiently small, the stability arguments here are still valid [11].
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Figure 5: Peak resolution plot for new architecture (fifth-order
loop filter). S(N+D)R = 87.6 dB.

� �0 is the output matrix,�0 2 R1�n , with elementssi,

� ki are real scalar gains,

� and� is the quantizer feedback gain.

H has thenominalmodel

H0 :
_x = A0x+B0e

� = �0x
(3)

in whichA0 andB0 are given by

A0 =

2
6666664

0 1 0 � � � 0

0 0 1
. ..

...
...

...
...

. .. 0
0 0 � � � 0 1
0 0 � � � 0 0

3
7777775
; (4)

and
B0 = [0 0 0 : : : 0 1]T : (5)

We make the following assumptions:

1. The input signal,r, is bounded. More precisely,r has the
following property:

jrj1 := sup
t�0

jr(t)j = Mr 2 R; 0 �Mr <1: (6)

2. H0 is minimum phase.

3. si 6= 0 for all i = 2; : : : ; n, sn > 0.

We have the following result. Let� be any real number such that
0 � � < 1. Let
1 := fx 2 R

n : j�j < �g define our “no-
overload” region. Let
2 := fx 2 Rn : jxij � big be a “hyper-
rectangle” contained within
1, i.e., 0 < bi <

�p
s2
1
+s2

2
+���+s2

n

,

i=1,. . . ,n. Suppose the mode selection logic is chosen such that

mode=

�
“Hard-Switching”; x 2 
1 � 
2

“Mild-” or “No-Switching” ; otherwise
(7)



and
� = �Mr � c� ; c� > 0; (8)

with switching logic chosen as follows:

k1= 0

ki =

�
�i�i ; F (mode; sgn(si�1)sgn(�)sgn(xi)) = +1

0 ; F (mode; sgn(si�1)sgn(�)sgn(xi)) = �1
(9)

for i = 2; : : : ; n, in whichF is given by

F [mode; l(t)] :=

(
l(t); mode = “Hard-Switching”

l
�j

t
Ts

k
Ts

�
; otherwise

(10)

Furthermore, suppose�i and�i in turn satisfy

�i =

�
1 ; mode=“Hard-Switching”
0 ; mode=“No-Switching”

(11)

with�i 2 (0; 1) if mode= “Mild-Switching”, i = 1,. . . ,n, and

�i = �si�1

si
� ci; ci > 0; (12)

for i = 2; 3; : : : ; n. Then ifx(0) is chosen such thatj�(0)j < �,
the modulator is stable in the sense thatkx(t)k is bounded and
j�(t)j < � for all t � 0.2

Proof (sketch):
We first show that with the system described above, finite-escape-
time instabilities (described in [9]) cannot occur under the mild- or
no-switching modes. Thus there is no danger than the system state
will “blow up” to infinity before hard-switching can set in.

Since in mild- or no-switching, the switching feedback gains
are time-latched, the right-hand side ofH can be shown to be
piecewise (in time) globally Lipschitz. Thus, using [9, Theorem
2.3], it can be shown that the solutionx(t) exists for all time.
Therefore there are no finite escape times.

We now show that under hard-switching, from any initial state
x(0) 2 R

n , x(t) ! 0 such thatj�(t)j decreases monotonically
from j�(0)j. We define our positive definite Lyapunov-like func-
tion as

V (�) =
1

2
�
2
: (13)

Recall that� = �0x. Note that for this Lyapunov argument, we
assume that� 6= 0, and fix the system in hard-switching mode.
Differentiating (13) with respect tot yields

_V =
dV

d�

d�

dx
_x

= s1(k1)�x1 +
nX
i=2

si(
si�1

si
+ ki)�xi

+sn�(�sgn(�) + r): (14)

After some manipulation, we obtain

_V < s1(k1)�x1 +

nX
i=2

si(
si�1

si
+ ki)�xi

+snj�j(� + jrj1): (15)

Now, by inspection of this inequality, it can be seen that if� and
ki, i = 1; : : : ; n, are given by (8) and (9) in the hard-switching
mode, then

_V < 0; � 6= 0: (16)

From [6, Theorem 1], the hyper-plane� = �0x = 0 contains
a globally reachable sliding mode. On the surface� = 0, the
modulator state evolves according to the dynamics

D� :
_x = [I �B0(�0B0)

�1�0]A0x
�0x = 0

(17)

specified by the method of equivalent control [11]. It can be shown
that the eigenvalues of[I�B0(�0B0)

�1�0]A0 correspond to the
zeros of the nominal loop filter,H0. But sinceH0 is minimum
phase,D� is stable.

Thus, for any initial statex(0), the system is stable in the sense
thatkx(t)k andj�(t)j are bounded. Moreover, since_V < 0 and
V = 1

2
�2, j�j cannot increase with time under hard-switching.

Therefore, quantizer overload is prevented if� is chosen suffi-
ciently small.2
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