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Abstract.1 Cyclic signal processing refers to situa-
tions where all the time indices are interpreted modulo
some integer L. Since the frequency domain is a uni-
form discrete grid, there is more freedom in theoretical
and design aspects. The basics of cyclic(L) multirate
systems and filter banks have already appeared in the
literature, and important differences between the cyclic
and noncyclic cases are known. Since there is a strong
connection between paraunitary filter banks and or-
thonormal wavelets, some deeper questions pertaining
to cyclic(L) paraunitary matrices are addressed in this
paper. It is shown that cyclic(L) paraunitary matri-
ces do not in general have noncyclic paraunitary FIR
interpolants, though IIR interpolants can always be
constructed. It is shown, as a consequence, that cyclic
paraunitary systems cannot in general be factored into
degree one nonrecursive paraunitary building blocks.
The connection to unitariness of the cyclic state space
realization is also addressed.

1. INTRODUCTION
Cyclic signal processing refers to situations where all
the time indices are interpreted modulo some integer
L. In such cases the frequency domain is defined as a
uniform discrete grid, as in L-point DFT [5],[7]. This
offers more freedom in theoretical as well as design
aspects. The circular convolution viewpoint has al-
ready found applications in image coding [8],[6]. Filter
banks based on circular convolution have also been in-
troduced with various different motivations, including
the generation of cyclic wavelets [2],[3],[4],[10]. The
fundamentals of cyclic(L) multirate systems and fil-
ter banks have also been presented recently [10], em-
phasizing important differences between the cyclic and
noncyclic cases.

In view of the increasing interest on this topic, and
since there is a strong connection between paraunitary
filter banks and orthonormal wavelets [1], [9],[11] some
theoretical questions pertaining to cyclic(L) parauni-
tary matrices were addressed in [10]. Since then a num-
ber of deeper properties have been discovered, which
might be of significant interest to researchers in the
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filter bank and wavelet communities. The purpose of
this paper is to present some of the interesting prob-
lems that connect cyclic and noncyclic paraunitary sys-
tems.

2. CYCLIC LTI SYSTEMS
Consider two sequences x(n) and h(n) defined for 0 ≤
n ≤ L− 1, and let y(n) denote their circular or cyclic

convolution [7]. That is, y(n) =
∑L−1
m=0 x(m)h(n−m)

with all arguments interpreted modulo L. We can re-
gard x(n) and y(n) as the input and output, respec-
tively, of a linear system. With all time-arguments
interpreted modulo-L, this is also a time-invariant sys-
tem (i.e., a circular-shift invariant system). We say
that {h(n)} is a cyclic LTI system. For the purpose
of interpretation one can also regard x(n) to be a
periodic-L input, for which the LTI system h(n) yields
the periodic-L output y(n). This definition also ex-
tends to the multi-input multi-output case where the
transfer function is a matrix sequence E(k), regarded
as the L-point DFT

E(k) =

L−1∑
n=0

e(n)W kn
L , 0 ≤ k ≤ L− 1,

and the input-output relation in the cyclic-time do-

main is y(n) =
∑L−1
m=0 e(n−m)x(m).

A cyclic(L) paraunitary system is defined to be a
cyclic(L) LTI system whose transfer matrix E(k) is

unitary, that is, E†(k)E(k) = I for 0 ≤ k ≤ L−1. Com-
pare this with the paraunitary property of a noncyclic

system Enon(z), which is defined as Ẽnon(z)Enon(z) =

I. (where Ẽnon(z) = E
†
non(1/z∗)). Similarly the scalar

cyclic(L) system is said to be allpass if H(k) = ejθk for
0 ≤ k ≤ L− 1.

The noncyclic counterpart of a cyclic(L) LTI system
E(k) is defined as

Enc(z) =
L−1∑
n=0

e(n)z−n (1)

This can be regarded as an interpolated version in the
frequency domain, with E(k) representing the samples

of Enc(z) at the unit-circle points z = W−kL = ej2πk/L.



           

Notice that the noncyclic version is only one possi-
ble interpolant. More generally, a noncyclic transfer
function Eint(z) is said to be an interpolant for the
cyclic(L) system E(k) if

Eint(W
−k
L ) = E(k). (2)

If the interpolant is restricted to be of the form Eint(z) =∑N
n=0 eint(n)z−n and N ≤ L− 1 (i.e., FIR with order

≤ L−1) then Enc(z) = Eint(z) because eint(n) is then
the inverse DFT of E(k)). However, there can exist in-
terpolants with N ≥ L, and even IIR interpolants.

In [10] we showed that the noncyclic counterpart
does not in general share the properties of the cyclic
system. For example, H(k) might be a cyclic(L) all-
pass filter but Hnc(z) may not be allpass. Similarly
it is possible that E(k) is paraunitary but not Enc(z).
This raises the following natural question: are there
FIR paraunitary interpolants with higher orders, and
are there IIR interpolants? In the next few sections
we address various aspects of these questions, and also
connect this interpolation problem to the question of
factorizability of cyclic(L) paraunitary matrices.

3. PARAUNITARY INTERPOLATION

Given an arbitrary cyclic(L) paraunitary system H(k),
that is, a sequence of M ×M unitary matrices

H(0),H(1), . . . ,H(L− 1), (3)

can we always find a paraunitary interpolant Hint(e
jω)?

This is the paraunitary interpolation problem. For
the scalar case (M = 1) this becomes the allpass
interpolation problem. For the matrix case (arbi-
trary M) we distinguish between the FIR case where

Hint(z) =
∑N
n=0 h(n)z−n, and the IIR case. In the

IIR case we again distinguish between rational inter-
polants (where each element in Hint(z) is a ratio of
polynomials in z−1), and irrational ones.

3.1. Scalar Allpass Interpolation
Any scalar cyclic allpass filter H(k) can be written in

the form H(k) = c(
∑J
n=0 b

∗
J−nW

kn
L )/(

∑J
n=0 bnW

kn
L )

where |c| = 1. This shows that there exists a noncyclic
allpass interpolant

Hint(z) = (c
J∑
n=0

b∗J−nz
−n)/(

J∑
n=0

bnz
−n)

where |c| = 1. In general, this interpolant does not have
all poles inside the unit circle. For example, suppose
N = 1 and consider the cyclic allpass filter H(k) and
its interpolant Hint(z) given below:

H(k) =
b∗ +W k

L

1 + bW k
L

Hint(z) =
b∗ + z−1

1 + bz−1
(4)

Let |b| > 1. Then the cyclic allpass filter is still well
defined (because 1 + bW k

L 6= 0 for any k). But the

interpolant Hint(z) represents an allpass filter with a
pole outside the unit circle. This raises the following
question: suppose we allow the allpass interpolant to
be of higher order N (even possibly N > L). That is,
we now have

H(k) =
b∗ +W k

L

1 + bW k
L

Hint(z) =
c
∑N
n=0 b

∗
N−nz

−n∑N
n=0 bnz

−n

(5)

Can we show there exists a polynomial
∑N
n=0 bnz

−n of
some order N with all its zeros inside the unit circle
(i.e., a minimum-phase polynomial) such that H(k) =

Hint(W
−k
L )? The following example gives evidence to

the contrary.
Example 1. Minimum phase interpolants. LetB(k) =

1 + bW k
L with b > 1 and let Bint(z) =

∑N
n=0 bnz

−n

be an interpolant with real coefficients, i.e., B(k) =

Bint(W
−k
L ). We can find unlimited number of choices

of N and {bn} satisfying this. But for even L, there
does not exist even one choice such that Bint(z) has
minimum phase (i.e., all zeros in |z| < 1). This is
proved as follows: since the coefficients {bn} are real, a
necessary condition for Bint(z) to have minimum phase
is that Bint(1) and Bint(−1) have the same sign (Prob-

lem 2.13, [9]). By setting k = 0 in B(k) = Bint(W
−k
L )

we find B(0) = Bint(1). Similarly B(L/2) = Bint(−1).
Using b > 1 we therefore conclude

Bint(1) = 1 + b > 0, Bint(−1) = 1− b < 0.

Thus Bint(1) and Bint(−1) could never have the same
sign no matter how we choose N and {bn}. Summariz-
ing, B(k) does not have a minimum phase interpolant
Bint(z). However, it is still conceivable that the ratio

B̃int(z)/Bint(z) has some cancellations, thereby result-
ing in a stable allpass interpolant. Moreover, we have
not considered the possibility of a complex-coefficient
interpolant (which is conceivable even for real b).

3.2. FIR Paraunitary Interpolation
Given the unitary sequence (3), can we always find a
paraunitary interpolant restricted to be FIR, i.e., of

the form Hint(z) =
∑N
n=0 h(n)z−n? For the scalar

case (M = 1) the answer is evidently no, because the
interpolant has to be an FIR allpass function (which
cannot be more general than a mere delay). So we
assume M 6= 1. If we make the restriction N < L
the coefficients h(n) are simply the inverse DFT coef-

ficients of Hint(W
−k
L ) and the interpolant is the non-

cyclic counterpart defined in Sec. 2. This may not be
paraunitary as seen from the examples of [10]. More
generally, suppose we allow N to be arbitrarily large
but finite. Does this allow us to always find a parauni-
tary interpolant? In general the answer is still no, as
we shall demonstrate. For this we first review a well
known result for noncyclic 2×2 causal FIR paraunitary
matrices [9]:
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Theorem 1. Let Hnon(z) =
∑N
n=0 h(n)z−n be a

2× 2 causal FIR paraunitary system. Then it has the
general form

Hnon(z) =

[
H0(z) ejθz−n0H̃1(z)

H1(z) −ejθz−n0H̃0(z)

]
(6)

where H̃0(z)H0(z) + H̃1(z)H1(z) = 1 (power comple-
mentary property), θ is real, and n0 is any integer large
enough to ensure causality. ♦

Consider now the cyclic(L) example

H(k) =

[
ejα(k) 0

0 ejβ(k)

]
(7)

which is evidently paraunitary for any arbitrary (real-
valued) α(k) and β(k). Suppose there exists a noncyclic
causal FIR paraunitary interpolant Hint(z). If this in-
terpolant is diagonal, thenH0(e

jω) = ce−jωN and α(k)
has to be of the form −2πkN/L plus a constant. Thus
for arbitrary α(k) and β(k), there is no diagonal FIR
paraunitary interpolant Hint(z). How about a nondi-
agonal interpolant? Since it would have the form (6),
α(k) and β(k) cannot have arbitrary combinations of
values. Only combinations satisfying

β(k) = −α(k)− 2πkn0/L+ δ

for some δ are allowed. This shows that cyclic parauni-
tary systems do not in general have noncyclic FIR pa-
raunitary interpolants. Whenever such an interpolant
does exist, it can be factorized into the form [9]

Hint(z) = Hint(1)
J∏
i=1

(
I− uiu

†
i + z−1uiu

†
i

)
(8)

where ui are unit norm vectors. By replacing z−1 with
W k
L we obtain

H(k) = H(0)

J∏
i=1

(
I− uiu

†
i +W k

Luiu
†
i

)
(9)

which is a factorization of the cyclic paraunitary sys-

tem H(k) in terms of the building blocks
(
I− uiu

†
i +

W k
Luiu

†
i

)
. Thus, whenever a noncyclic FIR parauni-

tary interpolant exists, the cyclic system can be fac-
tored as above. Conversely, if the cyclic system can be
factored as in (9), then replacing W k

L with z−1 we ob-
tain a FIR paraunitary interpolant. Summarizing we
have proved:

Theorem 2. FIR interpolants. Let H(k) be a
cyclic(L) paraunitary system, (i.e., H(k) unitary for
0 ≤ k ≤ L − 1). Then it has a noncyclic causal FIR
paraunitary interpolant Hint(z) if and only if H(k) can
be factorized in the form (9) where ui are unit-norm
vectors. ♦

4. IIR PARAUNITARY INTERPOLATION

If we do not restrict the interpolant to be FIR, then
we can always find a paraunitary interpolant for the
unitary sequence (3). For this we simply define,

Hint(e
jω) = H(k),

2πk

L
≤ ω < 2π(k + 1)

L
(10)

for 0 ≤ k ≤ L− 1. Then the sample values Hint(W
−k
L )

are evidently equal to H(k). The interpolant Hint(e
jω)

is a piecewise constant, and has discontinuities at the
frequencies 2πk/L. It is therefore not a rational func-
tion in ejω (i.e., the elements in the matrix are not
ratios of polynomials in z). The following theorem as-
serts that we can always construct rational solutions in
the IIR case. Stability of the interpolant, however, is
not asserted.

Theorem 3. IIR interpolants. Let H(0),H(1), . . .
H(L − 1) be a sequence of M ×M unitary matrices.
Then there exists a causal system with rational transfer
matrix Hint(z) such that Hint(W

−k
L ) = H(k). ♦

Proof. The crucial building block is the matrix

Uk(z)
∆
=I− uu† + z−1Fk(z)uu†

where Fk(z) is a rational allpass filter and u is a unit-
norm vector. We can verify that Uk(z) is paraunitary.
Suppose the allpass filter Fk(z) is chosen such that

Fk(W
−m
L ) =

{
W−mL m 6= k

−W−mL m = k

We can regard Fk(z) as a rational allpass interpolant
(Sec. 3.1) with samples at z = W−mL as specified
above. With this choice of Fk(z), the matrix Uk(z),
sampled at z = W−mL , yields

Uk(W
−m
L ) =

{
I for all m 6= k

I− 2uu† for m = k

Now any M ×M unitary matrix can be expressed as a

product of M − 1 matrices of the form I− 2uu†. More
precisely [9] each matrix H(k) in the given unitary se-
quence can be expressed as

H(k) =

(
M−1∏
i=1

(
I− 2ui,ku

†
i,k

))
Λ(k)

where ui,k are unit-norm vectors and Λ(k) is diago-
nal with nth diagonal element ejθk,n . We can find a
rational allpass filter Fn(z) such that

Fn(W
−m
L ) =

{
1 m 6= k
ejθk,n m = k

Then the diagonal matrix Dk(z) with diagonal ele-
ments Fn(z) has the unit-circle samples

Dk(W
−m
L ) =

{
I m 6= k
Λ(k) m = k.
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By multiplying matrices of the form Uk(z) and Dk(z),
we can define a noncyclic paraunitary system Gk(z)
such that

Gk(W
−m
L ) =

{
I m 6= k
H(k) m = k

The product Hint(z) = G0(z)G1(z) . . .GL−1(z) then
represents a rational IIR paraunitary interpolant for
the given matrix sequenence {H(k)}. 555

5. UNITARINESS OF REALIZATION MATRIX

Suppose we are given an implementation for a cyclic
transfer matrix E(k). This implementation has a state
space description of the form [10] v(n+ 1) = Av(n) +
Bx(n) and y(n) = Cv(n) + Dx(n). The realization
matrix for the implementation is defined as[

A B
C D

]
(11)

The following result connects the cyclic-paraunitary
property to unitariness of the realization matrix.

Lemma 1. If the realization matrix is unitary, then
the cyclic system E(k) is paraunitary.
Proof. Rewrite the state equations as[

v(n+ 1)
y(n)

]
=

[
A B
C D

] [
v(n)
x(n)

]
Unitariness of the realization matrix implies ‖v(n +
1)‖2 + ‖y(n)‖2 = ‖v(n)‖2 + ‖x(n)‖2 where ‖v‖2 de-

notes v†v. If we write the preceding equation for
0 ≤ n ≤ L− 1 and add them up, we obtain

L−1∑
n=0

y†(n)y(n) =

L−1∑
n=0

x†(n)x(n)

by using the fact that v(n+ L) = v(n). With X(k) =∑L−1
n=0 x(n)Wnk

L and Y(k) =
∑L−1
n=0 y(n)Wnk

L , we then

obtain (using Parseval’s relation)
∑L−1
k=0 Y†(k)Y(k) =∑L−1

k=0 X†(k)X(k), that is,

L−1∑
k=0

X†(k)E†(k)E(k)X(k) =
L−1∑
k=0

X†(k)X(k)

This should hold for all sequences {X(k)}, which im-

plies that X†(k)E†(k)E(k)X(k) = X†(k)X(k) for any

X(k), proving E†(k)E(k) = I indeed. 555
This result is analogous to a result in the non-

cyclic case [9]. However, unlike in the noncyclic case,
we do not have the converse result. That is, even
if E(k) is paraunitary, there may not exist a mini-
mal nonrecursive structure with unitary system ma-
trix. When such a structure does exist, the FIR in-
terpolant Eint(z) = D + C(zI −A)−1B, obtained by

replacing W k
L with z−1 in the structure, would be pa-

raunitary (because the converse part holds in the non-
cyclic case [9]). Since FIR paraunitary interpolants do
not always exist (Theorem 2), the point is proved.

6. CONCLUDING REMARKS

It is well known that noncyclic FIR paraunitary sys-
tems can be factored [9] in terms of the building blocks

I−uiu
†
i + z−1uiu

†
i , where u

†
i ui = 1. But in the cyclic

case, factorization in terms of (I− uiu
†
i +W k

Luiu
†
i ) is

not always possible. In fact Theorem 2 shows that such
factorization is possible if and only if there exists an
FIR paraunitary interpolant. However, the fact that
there always exists a rational IIR interpolant (Theorem
3) means, in particular, that we can obtain a factor-
ization of the cyclic system H(k) in terms of slightly
modified building blocks. These have the form Uk(z)
and Dk(z) given in the proof of Theorem 3, with z

replaced by W−kL everywhere.
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