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ABSTRACT

Multi-resolution sub-band cepstral features strive to exploit
discriminative cues in localised regions of the spectral domain
by supplementing the full bandwith cepstral features with sub-
band cepstral features derived from several levels of sub-band
decomposition. Mult-iresolution feature vectors, formed by
concatenation of the subband cepstral features into an extended
feature vector, are shown to yield better performance than
conventional MFCCs for phoneme recognition on the TIMIT
database. Possible strategies for the recombination of partial
recognition scores from independent multi-resoltuion sub-band
models are explored. By exploiting the sub-band variations in
signal to noise ratio for linearly weighted recombination of the
log likelihood probabilities we obtained improved phoneme
recognition performance in broadband noise compared to MFCC
features. This is an advantage over a purely sub-band approach
using non linear recombination which is robust only to narrow
band noise.

1  INTRODUCTION

The choice of any acoustic feature set for speech recognition is
motivated by its potential for increased class seperability, the
success of which is ultimately reflected in a reduction in
recognition error rate. In recent work we presented promising
results using multi-resolution feature sets in both time and
frequency. The structure of the multi-resolution spectral feature
set [1] was to supplement the familiar Mel-filterbank cepstral
coefficients (MFCC) taken over the full spectral bandwidth,
with cepstral analysis of the mel-filterbank log energies grouped
into sub-bands eg. a low band (0-2000Hz) and a high band
(2000-7900Hz). This is based on the conjecture that important
additional cues for phonetic discrimination may exist in the
local spectral correlates that are not captured by the full band
cepstral analysis. The level of sub-band decomposition and
subsequent cepstral analysis can be increased such that features
may be selected from a pyramid or hierarchy of resolution
levels.

In recent years there has been a number of papers on sub-band
based recognition [2,3,4,5]. These have been primarily inspired
by Allens paper [6] summarising important conclusions on
experiments conducted by Fletcher, during the early part of this
century, on the nature of Human Speech Recognition (HSR).
The central conclusion of this work is the proposition that the

human auditory system relies on the recognition of independent
spectral-temporal features, merged at some higher processing
level into recognition of basic phonemes, and subsequent
syllables, words etc. Results reported on the merging of partial
recognition scores from independent HMM based sub-band
recognisers using an MLP [2] concluded that, while no increase
in basic recognition was achieved, the system is more robust in
narrowband noise conditions.

While a similarity exists with the purely sub-band based
approaches of [2] and [3], there are important distinctions and
extensions underlying the motivation for multi-resolution
features. The first is that the local spectral or sub-band
information supplements, rather than substitutes, full band-
width discriminative information. One of the design choices for
sub-band based schemes is the number of bands and the exact
sub-band boundary decomposition. In an optimal sense the sub-
band boundaries and hence cepstral analysis lengths should be
class specific. No model formulation or method of training yet
exists however where the varying transform lengths for sub-
band feature extraction can be expressed as a trainable
parameter. A possible advantage of the multiresolution feature
set is that the  inclusion of different resolutions of sub-band
decomposition in effect relaxes the restriction of using a single
fixed sub-band decomposition.

Our initial presentation and experimentation with multi-
resolution cepstral features is based on concatenation of cepstral
features from each multi-resolution sub-band to form a single
extended feature vector. An alternative to this approach is to
combine the likelihood scores of independent resolution and
sub-band acoustic models. The recombination must in some way
reflect discriminative confidence between the individual sub-
band and resolution models, within and between each phone
class. MLP-based recombination [2] attempts to create re-
combination discriminative functions for each phoneme model
over all other phonetic sub-band model scores. Here we have
experimented with weighted combination of the log likelihood
scores of the multi-resolution sub-band models for each
phoneme class, based on the principle of weighting confidence
in each sub-band recogniser according to its discriminative
potential and its SNR. Experiments with phoeneme dependent
weighting of the sub-band and resolution log probability scores
to improve robustness in broadband noise in particular are
described. Further refinements include employing state-
dependent weighting and possible weight adaptation based on
time-varying sub-band SNR of speech.



2  MULTI-RESOLUTION SUBBAND
FEATURES

The multi-resolution cepstra combines sets of features offering
different trade-offs between the spectral resolution, the variance
and the class separability. LetE E E E= [ , , , ]1 2 � T  be a

sequence of log mel-filter bank energy vectors.  Cepstral
features are derived from a linear transformation of

X AEt t= (1)

A is conventionally the DCT, but it can be a general
discriminative feature transform [7]. Multi-resolution feature
vectors are a concatenation of a set of feature transformations as

X A E A E A E A E A E A E A Et t t t t t t t
T= [ , ( , ),( , , , , ) ]0 11 11 12 12 21 21 22 22 23 23 24 24�

(2)

A1Et, yields the cepstral features over the whole bandwidth,
(A12Et12 ,A22Et22) yield cepstral features over the lower half and
the upper half subbands, and  (A14Et14 ,A24Et24, A34E34 ,A44Et44)
yield the features over four subband quadrants and so on. Fig(1)
illustrates the first three basis functions in each sub-band for
these resolution levels.
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Figure 1 - DCT basis functions in a 3-level multi-resolution
cepstral analysis.

3  PARTIAL RECOGNITION
RECOMBINATION

Whilst our initial presentation and experimentation is based on
straightforward concatenation of the cepstral coefficients from
each multi-resolution  sub-band to form a single feature vector,
the recombination or merging of scores from independent
models for each sub-band stream may permit further
enhancements to performance, particularly in noisy operating
conditions. It is a straightforward step to extend the principle of
merging individual sub-band recogniser scores to multi-
resolution sub-band recombination. In [2] trained MLPs were
employed to perform non-linear merging to model re-
combination functions for each phoneme classifier over all class
sub-band model scores. Here we have experimented with linear

weighted merging of the log likelihood scores of the multi-
resolution models within  each classification class.

Consider the multi-resolution subband cepstral feature vector X

split into separate stream vectors X ( )rb {r=1,..,R; b=1,..,Br}
where r identifies the resolution level and b the sub-band index
within that resolution (for r=1 indicating the full band Br=1). If

we associate independent models Ml
rb( )  for each band b within

resolution r, the combined log likelihood for class l can be given
as
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The multi-resolution sub-band weights ω l
rb( ) should ideally

reflect the discriminative potential or confidence of each

subband for a particular class. Fully independent models Ml
rb( )

will have separate state transition probability matrices. However
for our initial experiments the state transition probabilities are
effectively tied for the sub-band models of each phoneme. As
previously reported [2] the potential benefits of relaxing the
temporal synchrony of spectral transitions within sub-bands
could not be confirmed, so the use of tied state transitions is
hence a reasonable approximation to adopt.

In [2,3] some discussion was devoted to the question of which
temporal resolution was most appropriate at which to perform
recombination. ie. merging scores at a segmental level such as
phones or syllables. For continuous speech recognition it is
necessary to merge scores at the “frame” level ie. for each
incoming acoustic vector. Choosing an appropriate increased
temporal resolution or segmental level for recombination would
be difficult to assess optimally due to the variations in phoneme
durations.

An advantage of splitting the spectral information into sub-
bands is that variations in sub-band SNR may be exploited for
improved recognition in noisy conditions. Thus by weighting the
confidence in each multi-resolution sub-band stream according
to its SNR, the influence of low SNR information can be
reduced with a corresponding shift to reliance on partial
recognition from higher SNR regions of the spectrum. Thus
equation(3) can be refined to
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whereω l
rb

l
rbSNR( ) ( )( ) specifies the sub-band weighting to  be a

function of the local SNR (for band b in resolution level r) for
model l. This recombination strategy is illustrated Fig(2). A
possible function for weight variation could be
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In this case, α  is also necessarily model dependent, in order to
reflect the SNR range of the particular phonetic sub-band.



Another approach which avoids the need for making a further
parameter choice is to use what is effectively a Weiner-type
weighting of the multi-resolution sub-band streams. This  can be
expressed by
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or alternatively by equation (7)

log ( )( ) ( )p X Ml
11 11

log ( )( ) ( )p X Ml
21 21

log ( )( ) ( )p X Ml
22 22

ω l SNR( ) ( )( )11 11

ω l SNR( ) ( )( )21 21

ω l SNR( ) ( )( )22 22

∑
log ( )p X Ml

(WNN $CPF 
(KTUV� 4GUQNWVKQP

5GEQPF 4GUQNWVKQP .GXGN

.QYGT $CPF

7RRGT $CPF

Fig(2) Linear Recombination of Independent Sub Band Scores
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Sl
rb( )  defines the signal power in sub-band b of resolution r for

the phoneme class l. This value is obtained experimentally by
averaging the energy within each sub-band over all occurrences

of each particular phoneme across the TIMIT database. N rb( )

specifies the noise energy within a sub-band. As the spectral
characteristics within each state of a phonetic HMM are
different a refinement to the weighting functions would be to
make them, not only model dependent, but also state dependent.
Thus, for the weighting function equation (7), the weight for
state j in model l becomes
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A possible estimation of state-dependent sub-band energies
could be obtained by inverse DCT of the cepstra from trained
phonetic HMM states, followed by summation of mel-filterbank
energies over a sub-band group. In the above representation, the
multi-resolution sub-band weightings are model-dependent and
fixed. However in non-stationary noise environments it may be
better to weight confidence on the features extracted within sub-
bands on the time-varying or signal-dependent SNR. These
weights would in effect be used to modify the underlying

confidence in the partial recognition for a particular phonetic
sub-band model conditioned on the time-varying signal and

noise spectra. Thus if the function ω ( ) ( )( ( ) )rb rbSNRX indicates

that the weight ω  depends on the use the SNR in band b or
resolution r as a function of the parameter vector X, the
recombination expression (3) becomes
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4  EXPERIMENTAL RESULTS

4.1     Multi-Resolution Cepstra on TIMIT Database

The performance of  the multi-resolution cepstral feature set
was tested on the TIMIT continuous speech database using 39
context-independent HMM models. The full TIMIT training and
test sets were used throughout. Table(1) gives results for purely
sub-band based feature sets, along with the subband boundaries
implemented. Table(2) gives the recognition performance for
the multiresolution sets, where for example, the set (13)+(7,7)
indicates that 13 cepstral coefficients are taken from a full-band
analysis (ie. the first resolution), and 7 cepstral coefficients
taken from the lower and 7 from the upper band of the 2nd

resolution level. C0 is included for each sub-band cepstra, and
the results represent the coefficients supplemented in all cases
by the delta and delta-delta trajectory coefficients. A mel-spaced
filterbank implementation, rather than DFT, was used for the
initial log spectral feature extraction. The results given are for
12 mixture HMMs.

Number
of Bands

Bandwidths
(kHz)

Cepstral
Analysis

Recognition(%)

1 0-7.9 (13) 68.8
2 0-2,2-7.9 (7,7) 69.9
4 0-0.7,0.7-2

2-4,4-7.9
(5,5,3,2) 69.6

Table(1) TIMIT Subband Recognition Results

MultiResolution Cepstral Analysis Recognition(%)
(13)+(7,7) 70.6
(8)+(4,4) 67.9
(13)+(5,5,3,2) 70.6
(13)+(7,7)+(5,5,3,2) 70.5

Table(2) TIMIT MultiResolution Recognition Results

All the experiments were carried out using the HTK toolkit.
(The baseline recognition score using HTKs own MFCC
features is 69%).

The results from Table(1) show some improvement in
performance using subband cepstral features alone, compared to
the full bandwidth cepstra. Table(2) however indicates further
improvement in recognition performance when the multi-



resolution features sets are employed. Supplementing the full
band cepstra with either 2 or 4 sub-band cepstra gives similar
results. Use of both resolution levels is seen to yield no further
advantage however. A reduction in the number of cepstral
coefficients retained from each band, as indicated by the multi-
resolution feature set (8)+(4,4), leads to a decrease in
performance.

4.2   Independent Stream Weighting in Noise

Table (3) summarises some initial experiments using the fixed
Weiner type weightings (7) for recombination of independent
mulit-resolution sub-band streams according to (3) for
continuous speech recognition. The results are for performance
in white noise with a signal to noise ratio (pertaining over the
full TIMIT training set) of 15dB. In obtaining values for the
stream weights of each phonetic HMM, the sub-band signal
powers for each monophone were averaged over their
occurrences across the full TIMIT training set. The sub-band
decompositions are the same as defined Table(1)

MultiResolution Cepstral Analysis Recognition(%)
(13) 36.46
(7,7) 38.97
(13)+(7,7) 43.65

Table(3)  Recognition Performance in 15dB white noise

The baseline recognition rate is low given that the 0th ceptsral
coefficient is retained in the feature vector. The performance is
however increased with the use of two sub-bands.  The best
result obtained thus far is from use of the weighted multi-
resolution sub-band models, with a reduction in error rate of
7.5%. These results compare favourably with those reported [2],
where no improvements in performance using sub-band merging
under white noise were obtained over using conventional
features.

5    FUTURE WORK

Future work will explore more thoroughly the use of state-
dependent weighting in a range of broadband noise conditions.
Discriminative training of the stream weights for baseline
recognition is also to be investigated, based on a minimum
classification error (MCE) criterion. The Wiener-type
weightings for use in noise would in some manner modify these
baseline confidence measures.  The manner of this modification
is an issue for investigation but in the simplest sense would be
simply the product of the baseline and noise dependent weights.
Discriminative training of sub-band state-dependent linear
transforms may also yield further improvements in performance
[7]. The results did not provide a clear conclusion on the
optimum number of sub-bands. The use of two sub-band
decomposition resolutions was also seen to give no benefit in
recognition performance. It may be that full exploitation of sub-
band feature extraction for extending basic recognition
performance can be achieved through using model-dependent

sub-band boundaries. This however requires a new framework
for training which incorporates some form of probabilistic
decision making for optimum linear transform lengths.
Continued examination of the multi-resolution temporal or
segmental features introduced [1] is also currently being further
explored. The re-convergence of the multi-resolution sub-band
decomposition with the segmental feature set is nonetheless
envisaged for future experimentation.

6  CONCLUSIONS

Multi-resolution cepstral features supplement cepstral analysis
over the full-band mel filterbank log energies with cepstral
analysis of grouped sub-banded energies. The multi-resolution
cepstral features are demonstrated to improve monophone
recognition on the TIMIT database compared to single
resolution MFCCs. By exploiting the spectral variations in
signal to noise ratio in terms of weighting the log likelihood
scores from independent multiresoluion and sub-band streams
we also achieve a more significant improvement in performance
under white noise. This approach shows promise for increased
robustness and future work will focus on employing
discriminative training of stream weights and by extending SNR
based weightings to state and signal dependent versions.

REFERENCES

[1] S.Vaseghi, N.Harte, B. Milner, “Multi-Resolution
Phonetic/Segmental Features and Models for HMM-Based
Speech Recognition”, Proc. ICASSP-97, Vol. 2, pp.1263-
1266

[2] S. Tibrewala & H. Hermansky, “Sub-band Based
Recognition of Noisy Speech”, Proc. ICASSP-97, Vol. 2, pp.
1255-1258

[3] H. Bourlard & S. Dupont, “Subband-Based Speech
Recognition”, Proc. ICASSP-97, Vol 2, pp. 1251-1254

[4] H. Bourlard, S. Dupont, H. Hermansky, N. Morgan,
“Towards Sub-Band based Speech Recognition”, Proc.
EUSIPCO-96, pp. 1579-1582

[5] H. Hermansky, M. Pavel, S. Tribrewala, “ Towards ASR on
Partally Corupted Speech”, Proc. ICSLP-96, pp.462-465

[6] J. Allen, “How Do Humans Process and Recognise
Speech?”, IEEE Trans. on Speech and Audio Processing,
Vol. 2, No. 4, 1994, pp. 567-577

[7] R. Chengalvarayan & L. Deng, “HMM-Based Speech
Recognition Using State-Dependent, Discriminatively
Derived Transforms on Mel-Warped DFT Features”, IEEE
Trans. on Speech and Audio Processing, Vol. 5, No. 3,
1997, pp.243-256


