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ABSTRACT

Low bit-rate image coding brings about obvious degradation to the
compressed images, among which distortions at edges are particu-
lar objectionable. In this paper, a model-based edge reconstruction
algorithm is proposed for wavelet-based image coding at low bit-
rate. Our approach applies a general model to represent varieties
of edges existing in an image. Based on this model, the problem of
edge reconstruction is formulated as finding original edge model
parameters from the lossy image. The proposed method is able to
improve the subjective visual quality and fidelity (PSNR) of im-
ages coded by wavelet-based coding using zerotree quantization.

1. INTRODUCTION

Image compression is aimed to minimize the number of bits needed
to represent an image while maintaining sufficient quality. Images
compressed at low bit-rate, say below 0.25bpp, suffer from the loss
of details and sharpness, as well as various coding artifacts. On
the other hand, with the increasing needs of image transmission
and storage, the demand for higher compression is also increas-
ing. This problem can be alleviated by effective post-processing
which can improve the coding efficiency and, at the same time,
maintain compatibility with the encoder. Since different methods
have different artifacts, the post-processing technique should be
tailer-made for a coding method.

Recently, wavelet transforms have attracted considerable at-
tention with their application to image coding, due to their unique
space-frequency characteristics. Moreover, the hierarchical wavelet
image representation also allows efficient quantization and coding
strategies, such as zerotree quantization [1] [2]. At low bit-rate,
wavelet-based coding demonstrates some advantages over the tra-
ditional block-based methods in terms of visibility and severity
of coding artifacts. However, images coded using wavelet-based
methods still bear obvious artifacts around sharp edges, known as
“ringings effects” and blurring effects, as a result of the consid-
erable quantization errors of high frequency wavelet coefficients.
Since edges define the most recognizable features for objects in an
image, the distortions around edges are disturbing and annoying to
human perception.

In this paper, we propose a novel post-processing method for
recovering lossy edges by the use of a deterministic structural edge
model. Based on this model, the degradation of edges due to
wavelet-based coding using zerotree quantization is analyzed and
the edge recovery problem is formulated as the estimation of the
original edge model parameters from the compressed image. Fur-
thermore, the parametric edge reconstruction scheme allows a flex-

ible trade-off between visual enhancement and fidelity improve-
ment of the reconstructed images.

This paper is organized as follows. The edge model is first
reviewed in Section 2. We analyze the profile of lossy edges due
to wavelet-based coding in Section 3. Section 4 presents the edge
reconstruction algorithm. The experimental results are shown in
Section 5. Finally, we draw conclusions in Section 6.

2. EDGE ANALYSIS

2.1. Edge Model

Edges in 2-D images have a local 1-D structure feature in that there
are sharp intensity changes in one direction together with little or
no change in its perpendicular direction. Hence, an edge model
can be represented in the 1-D form. The edge model adopted here
has been described in depth by Beek in [3] where there are two
assumptions of practical situation: (1) Edges of objects in the real
world can be approximated by the ideal step functions; (2) The
acquisition system through which the image is acquired has a point
spread function of Gaussian. Therefore, an edge signals(x) with
the edge center atx = 0 is modeled as theGaussian smoothed
step edgedefined by

s(x) � s(x; b; c; w) = h(x; b; c) � g(x;w); (1)

where
h(x; b; c) = b+ cU(x); (2)

and
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From (1)–(3), an edge can be represented as

s(x; b; c; w) = b+
c

2
(1 + erf(

x

w
p
2
)); (4)

whereerf(�) is the scaled error function,w the parameter control-
ling the width of the edge,c the contrast across the edge andb the
intensity at the base. These parameters are depicted in Figure 1.

In a 2-D image with thex-y coordinate system, (4) becomes

s2D(x; y; b; c; w; �) = b+
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assuming that an edge passes through the origin at an angle� from
they-axis. For ease of explanation, we shall explain edge detection
and model parameter estimation based on (4).



Figure 1: 1-D edge model with edge center atx = 0.

2.2. Edge Detection

Canny edge detection [4] is applied by convolving the signals(x)
with the derivative of a Gaussian functiongd(x;�d) with �d con-
trolling the correctness of edge detection and accuracy of edge lo-
calization. Without considering the noise, the detection output is

d(x; c; w; �d) =
cp

2�(w2 + �2
d)
e

�x
2

2(w2+�2
d
) = c �g(x;�1); (6)

where�1 =
p

w2 + �2
d. An edge point is identified by checking

out the local maximum of the magnitude in the response of (6).
Edges of 2-D images are often not isolated but belong to some

curves which generally are the boundaries of the image structure.
Usually, long edge curves are more important for human percep-
tion compared with short ones. Therefore, edges are reconstructed
along the edge curves of significant length (see Section 4).

2.3. Model Parameter Estimation

A multi-point estimation method, which is based on several sam-
pled values near the peak of the response of edge detection, was
proposed in [3] for estimating the model parameters of a detected
edge. Given the response of edge detection expressed in (6) whose
local maximum is recognized as an edge, the detected edge may
not be at the true position because of the discretization of the sig-
nal. We indicate “edge point” as the edge on the sampled grid of
the discrete signal, and “edge center” as the true position of the
edge in the continuous version. Edge points can be identified dur-
ing edge detection, as shown in (6). For a signals0(x) with unit
sampling interval, if the edge point is atx = 0 and the true edge
center is atx = x0 (jx0j < 0:5), i.e.,

s0(x) = s(x� x0; b; c; w); (7)

then the response of edge detection in (6) becomes

d(x; c; w; �1) = s0(x) � g
0

d(x;�d) = c � g(x� x0;�1): (8)

By sampling (8) atx = �a; 0; a, we obtain three measurements:
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From (4), (9)–(11), wherea = 1 is a practical choice in the sam-
pled 1-D signal, parametersc,w, b and the subpixel position of the
edge center,x0, can be computed by
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a2
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d2d3

)
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d ; (12)
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)
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b = s0(x0)� c

2
: (15)

In a discrete signal,s(x0) in (15) can be obtained by the linear
interpolation between two nearest sampled points. It is shown in
[3] that with a suitable choice of filter scale�d for edge detection,
parameter estimation can be performed with sufficient accuracy.

3. EDGE ANALYSIS IN IMAGES WITH QUANTIZATION
ERROR

We now analyze the edge distortions due to the quantization error
of wavelet coefficients based on the consideration of the frequency
properties of the edge signals(x) in (1). For simplicity, the prob-
lem is discussed in the 1-D continuous form and the results can be
adapted to the 2-D discrete case. Denote the Fourier transform of
s(x) by

S(!x) =
c

j!x
e�

w
2
!
2
x

2 + 2�(b+
c

2
)�(!x);

where!x is the spatial frequency and�(�) the Dirac delta function.
We show the amplitude responsesjS(!x)j for edges with different
model parameters in Figure 2.
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Figure 2: Amplitude response of the 1-D edge model.

From Figure 2, it is observed that the amplitude response of
the edge model decays with a rate related tow andc of the edge.
Similar results are obtained for discrete wavelet transform (DWT).
In wavelet-based coding, DWT decomposes an image over sev-
eral scales where most energy is compacted to the low-pass band
with a small number of coefficients of large magnitude, and high
frequency components are dispersed among the high frequency



subbands with a large number of coefficients of small magnitude.
Furthermore, zerotree quantization of wavelet coefficients results
in keeping the higher bits of larger coefficients and discarding
smaller ones. Therefore, such a quantization scheme causes a con-
siderable truncation of high frequency energy, and introduces rela-
tively little effect on low frequency components. Thus, the wavelet
coefficients in high frequency subbands contributed to edges are
normally of small magnitude and discarded during quantization.
Based on these facts, we gives the following formulation of edge
distortion, in which edges in a compressed image is represented in
the 1-D form.

Ideally speaking, it is assumed that during wavelet-based cod-
ing using zerotree quantization, the edge signals0(x) of (7) is lo-
cally filtered with a low-pass zero phase filterf(x) of unity inte-
gral and accompanied with quantization noiseqn(x) in the output.
We therefore propose to model the coded signal by

s1(x) = s(x� x0;w; b; c) � f(x) + qn(x): (16)

Low pass filterf(x) widensw by a factor�(� > 1) which is
related to the amount of high frequency components truncated and
the original model parameters. If we considerf(x) as a FIR filter
which has a symmetrical (about origin) pulse response of unity
integral, it can be proved that the filtering ofs0(x) by f(x) leaves
the position of the edge centerx0 unmoved, as well as the value of
the edge centers(x0) unchanged, and causes no effect onc andb,
so (16) can be written in the form of

s1(x) = s(x� x0;w1; b; c) + qn(x); (17)

wherew1 = � �w. Then, edge detection and parameter estimation
of the signals1(x) are developed in the following sections.

3.1. Edge Detection in the Lossy Signal

The response of edge detection using Canny detector for the com-
pressed lossy signals1(x) is expressed as

dl(x) = s1(x)�g
0

d(x) = c �g(x�x0;w2)+qn(x)�g
0

d(x); (18)

wherew2 =
p

w2
1 + �2

d. Thus, as long as the noiseqn(x) can be
averaged out, the local maximum in (18) is the same as that in (8).

In [3], it is indicated that, with the consideration of various
errors of the practical situation, the setting of�d = 1:0 is a rea-
sonable value for edge detection in original images. In our ex-
periments, it was found that�d 2 (1:3; 1:6) is suitable for most
images coded using wavelet-based coding at low bit-rate.

3.2. Model Parameter Estimation in the Lossy Signal

Firstly, the initial estimated values of parametersc andw, denoted
by �c and �w, of the lossy signals1(x) are obtained by (12) and (13)
from the response of (18). Then, the parameter estimation of the
original signals0(x), where the computed values ofc,w andb are
denoted bŷc, ŵ andb̂ respectively, is given as follows:

ĉ � �c ; (19)

ŵ � �w

�
; (20)

b̂ � s2(0)� �c

2
; (21)

wheres2(x) is the Gaussian smoothed version ofs1(x); � is the
widening coefficient and its empirical setting can be determined
by the experimental analysis. Thus, the original edge model pa-
rameters are able to be estimated from the compressed signal.

4. EDGE RECONSTRUCTION ALGORITHM

We extend the results from the 1-D case to the 2-D image. In
order to obtain effective edge recovery, we introduce aconfident
function, areconstruction modeland aprojection operation, which
play important roles in our algorithm.

Let � be the compressed image andW its quantized wavelet
coefficient array in which most coefficients are zero. A pixel at
(x; y) in� is denoted asp(x; y), and the distance betweenp(x1; y1)
andp(x2; y2) is defined by

D(p(x1; y1); p(x2; y2)) =
p

(x1 � x2)2 + (y1 � y2)2:

Let Ije be the set which contains edge points of thejth edge curve
detected in�, andL(Ije) be the length of curveIje . Suppose there
aren curves in�. We define two sets,IE andIR, as follows,

IE = fp(x; y)jp(x; y) 2 Ije ; L(I
j
e) > L0 with 1 � j � ng

IR = fp(x; y)jD(p(x; y); p(xe; ye)) � D0; p(xe; ye) 2 IE

andp(xe; ye) = arg
p(xe;ye)

minD(p(x; y); p(xe; ye))g;

whereL0 andD0 are two thresholds for length filtering and mod-
ulus thresholding respectively.IE contains edge points of the edge
curves of significant length.IR is the edge region to be recovered.

4.1. Model-Based Edge Reconstruction

For a certain pixelp(x; y) 2 IR, its intensity value is denoted by
�(x; y) and its model-based approximation�(x; y) is given by

�(x; y) = b̂e +
ĉe
2
(1 + erf(

l

ŵe

)); (22)

wherel = D(p(x; y); p(xe; ye)) andp(xe; ye) 2 IE is the near-
est edge point top(x; y); ĉe, b̂e and ŵe are the estimated model
parameters of the original image associated with pixelp(xe; ye).

The use of�(x; y) is mainly for deblurring the lossy edges. In
practice, the approximation�(x; y) may not be close to the orig-
inal intensity ofp(x; y). We observe from experiments that the
validity of the model-based approximation decreases with the in-
crease ofl. However,�(x; y) provides a good intensity tendency
for eachp(x; y) 2 IR. This is attributed to the regularized edge
structure defined by the edge model. In order to measure the re-
liability of the approximation for edge reconstruction, with some
prior knowledge, we construct a confident function� as

�(l) = e�l�� with � � 0 ; (23)

where� is an empirical factor.
In the image�, the intensities of the pixels inIR contains

quantization noise which is exhibited as the ringing effect around
edges. A 2-D Gaussian filergs(x; y;�s) is adopted with�s = 1:0
for reducing this noise, since a small spread parameter�s adapts
to a rapidly-varying signal better than a large one [5]. The filtered
result of each pixelp(x; y) 2 IR is denoted by

��(x; y) = � � gs(x; y) : (24)

The deviation of��(x; y) introduced by Gaussian filtering may de-
crease with the increase ofl, so we weights��(x; y) by 1� �(l).

Both �(x; y) of (22) and ��(x; y) of (24) are incorporated
into the edge reconstruction ofp(x; y), since they are respectively
aimed at two artifacts existing around the lossy edges due to low



Figure 3: Result of Flower (512� 512, 8bpp). Left: Coded image (32.02dB, 0.10bpp). Right: Reconstructed image (32.34 dB, +0.32dB).

bit-rate wavelet image coding. We introduce a reconstruction model
with �(l) adjusting the balance between them as follows:

�̂(x; y) = �(l)�(x; y) + (1� �(l))��(x; y): (25)

By the tuning of� in (23) and (25), the influence of the ap-
proximation�(x; y) on each reconstructed pixelp(x; y) can be
adjusted. For an image, with an appropriate setting of�, the largest
PSNR gain can be attained. On the other hand, if we do not care
about the image fidelity and choose a smaller�, we can implement
edge enhancement with sharp edge structure. Thus,� provides us
a good trade-off on the quality of the reconstructed image.

4.2. Projection Operation in the Wavelet Domain

After edge reconstruction of (25), we require a projection opera-
tion defined as follows to ensure the validity of the post-processing.

W
0

(i; j) =

8<
:

W (i; j) if W (i; j) 6= 0

�T0 if W (i; j) = 0 andjŴ (i; j)j > T0
Ŵ (i; j) otherwise

whereŴ is the wavelet coefficient array of the image�̂ obtained
from (25); (i; j) is the coordinate of wavelet coefficients;T0 is
the quantization threshold ofW ; W

0

is the reconstructed wavelet
coefficient array. The inverse DWT ofW

0

gives the last result.

5. EXPERIMENTAL RESULTS

The proposed approach has been tested using twenty images coded
by wavelet-based codec SPIHT [2]. We use�d = 1:5, � = 1:3,
D0 =

p
8 and� = 0:6 in our experiments. The results show

that our method can improve the PSNR of all these images except
three which have few notable edge structures. On the other hand,
the visual quality of all these images is improved. Table 1 shows
the improvements in PSNR of standard images Lena, Peppers and

Table 1: PSNR(dB) of reconstructed images (512 � 512, 8bpp).

bit-rate Lena Peppers Flower
(bpp) PSNR Gain PSNR Gain PSNR Gain
0.20 33.26 +0.11 32.83 +0.10 36.25 +0.12
0.15 32.02 +0.13 31.68 +0.13 34.78 +0.32
0.10 30.45 +0.23 30.10 +0.26 32.34 +0.32
0.08 29.60 +0.25 29.12 +0.23 31.16 +0.34

Flower. Figure 3 demonstrates the improvement in visual quality
of the image Flower coded by SPIHT at 0.1bpp.

6. CONCLUSIONS

A new post-processing technique for images coded by wavelet-
based coding at low bit-rate has been presented. It reconstructs the
distorted edges in order to improve the image quality in terms of
both fidelity and visual perception. Experimental results show that
it performs well for most images with notable edge structures. The
proposed approach is promising in stretching the performance of
wavelet-based image coding at low bit-rate.
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