
IMPLEMENTATION OF A CAR HANDSFREE SPEECH
ENHANCEMENT APPLICATION ON A TI TMS320C54x DSP

Jamil CHAOUI, Sebastien de GREGORIO, Daravith KHO, Stephane SINTES, Yves MASSE
Texas Instruments France - Wireless Business Unit
BP5 - 06271 Villeneuve Loubet Cedex FRANCE

j-chaoui1@ti.com, s-de-gregorio@ti.com, d-kho@ti.com, s-sintes@ti.com, y-masse@ti.com

ABSTRACT

This paper describes the implementation of a car
handsfree speech enhancement application on a TI
TMS320C54x DSP. This fixed-point DSP family is
especially suited for wireless applications and it is shown
how, by taking full advantage of the DSP architecture and
instruction set, advanced wireless speech processing
applications can be efficiently implemented on these
devices. The performances of the complete speech
enhancement application in a car environment are
presented, showing that even with a fixed-point arithmetic
implementation, high performances close to a floating
point implementation can be achieved.

1. INTRODUCTION

In car handsfree applications, the driver speech to be
transmitted is mainly corrupted by the ambient noise
coming from the car, especially at high speeds. Due to the
growth of wireless cellular phone usage and the customer
requirement for better speech quality, it becomes
mandatory to provide a high conversation comfort during
handsfree communications. Therefore, handsfree car kits
must include powerful DSPs, allowing to perform efficient
speech enhancement algorithms.

At Texas Instruments, a speech enhancement algorithm for
car handsfree applications have been developed and
implemented on TI TMS320C54x fixed-point DSP. This
DSP is especially suited for all wireless applications and in
particular to advanced speech processing applications such
as speech coding, handsfree speech enhancement, acoustic
echo cancellation and speech recognition.

In this paper, we will first present the speech enhancement
algorithm. We will then explain why the TI TMS320C54x
DSP architecture is well suited for implementing this kind
of algorithm. The performances of the complete DSP
application in handsfree car environment will then be
described.

2. ALGORITHM DESCRIPTION

Let s(t) and n(t) denote the original speech and the car
noise respectively. x(t) is the noisy speech signal, collected
by the microphone: x(t) = s(t)+n(t).

Let S,X,N represent the spectra of these signals. It is well
known that the clean speech S can be estimated from the
noisy signal X by applying a time-varying filter H(f) in the
frequency domain [1][2]. Therefore, we can write

S(f) = H(f)X(f) (1)

The time-varying gain filter H can be expressed as a
function of the signal to noise ratio in each frequency
band, as follows:

()[]H f G SNR f() = (2)

where SNR is the signal-to-noise ratio computed in each
frequency band, expressed by

SNR f
X f

N f
()

()

()
=

2

2 (3)

The block diagram in Figure 1 shows the main processing
modules of the whole speech enhancement application.

The signal is sampled at 8KHz, and processed by blocks of
32ms length (256 samples), with a 50% overlapping
between adjacent blocks. Therefore, the processing is done
every 16ms.

A hamming windowing is first performed. The spectrum of
the frame is estimated with a classical FFT algorithm. The
SNR in each frequency band is then computed with (3).
The spectral filter H is then estimated with (2).

The input frame is then filtered with H in the frequency
domain, by multiplying these 2 signals, following (1).

The cleaned signal is then converted back to the time
domain, using a classical inverse FFT algorithm.

Figure 1
Block diagram

3. IMPLEMENTATION ON TI
TMS320C54x DSP

The algorithm has been implemented on a TI
TMS320C54x fixed-point DSP [3]. These DSPs combine
high-performance (up to 100MIPS at 2.5V CPU core
voltage), very low power consumption (0.6 mA/MIPS at
2.5V), a large degree of parallelism, and a specialized
instruction set aimed at efficiently implementing a variety
of complex algorithms and wireless applications.

These DSPs are based on an advanced Harvard
architecture (Figure 2), built around 4 major internal buses:
1 program bus, 2 read data buses and 1 write bus.
Therefore, 2 read and 1 write operation can be performed
in a single cycle. Some instructions allow to perform

memory store or memory loads in parallel with arithmetic
computation.

Therefore, advanced speech applications requiring
intensive computations, such as speech enhancement
algorithms, can be implemented in a very efficient way, by
taking fully advantage of the powerful architecture of these
DSPs.

3.1 FFT Implementation

Thanks to the bit-reversal addressing provided by the
TMS320C54x DSP family, a highly efficient FFT/IFFT
implementation can be achieved. This addressing mode is
indeed generating addresses in a bit-reversed order, so that
no extra cycles are required to arrange the FFT
coefficients. Moreover, thanks to the high parallelism of
the CPU architecture, the FFT butterfly can be performed
in only 9 machine cycles.

It may be demonstrated that the overall cycle number for
the complete FFT can be approximated with:

C
N

N Nb cycles butterflyFFT ≈
2 2* log ()* _ _

Where N is the FFT length and Nb_cycles_butterfly is the
number of cycles in the inner butterfly loop.

Therefore, in our application,

CFFT ≈ ≈256

2
256 9 92762* log ()* cycles

3.2 SNR Estimation

The SNR is estimated by dividing the power spectrum of
the noisy speech by the power spectrum of the noise
estimated during non-speech periods. This division is
performed thanks to a TMS320C54x DSP dedicated
instruction called SUBC, performing a conditional subtract
operation.

The SUBC operation subtracts the content of a source
accumulator from the content of a 16-bit data-memory
operand. If the result is greater than 0, this result is shifted
1 bit left, added to 1, and stored into the accumulator.
Otherwise, the source accumulator is shifted 1-bit left.

Given a 16-bit positive dividend and divisor, repeating the
SUBC instruction 16 times produces a 16-bit quotient in
the low accumulator part and a 16-bit remainder in the
high accumulator part. Therefore, a 16-bit fractional
division can be performed in 16 cycles.

Therefore, for the complete application, the overall cycle
number can be approximated with

CSNR ≈ =128 16 2048*

Windowing

Estimation of
SNR(f)

Computation of the
spectral filter H(f)

IFFT computation

FFT computation

Input Frame (32ms)

Output Frame (32ms)

Estimation of the clean speech
signal S(f) = H(f)X(F)

Figure 2
TMS320C54x CPU Architecture

3.3 Computation of the spectral filter H(f)

As the TMS320C54x is also providing a dedicated
instruction (POLY) to compute efficiently the output value
of a given polynomial, the spectral filter H is not tabulated
but directly estimated with a 4th-order polynomial
approximation.

POLY instruction is performing 2 operations in parallel:

1) Loading a memory location in the high part of an
accumulator B,

2) Multiply the high part of the other accumulator A by
the content of a temporary register T, adds the resulting
product to the high part of B, rounds the result and
stores it into accumulator A.

In simple terms, it may be said that this instruction is
performing the following operation in a single cycle:

P = P*x + b

Therefore, repeating this operation n times will provide the
computation of the output of a n-th order polynomial, in
the form:

()()()P x a x a x a x a x an n n n()= + ∗ + ∗ + ∗ +− −1 2 1 0

For the complete application, the overall cycle number
required by this part can be approximated with:

CH ≈ =128 4 512*

3.4 Spectral filtering of the noisy signal

Thanks to the 2 read buses, multiplying H(f) and X(f) can
be performed in a single cycle. Therefore, the whole
filtering of the original signal X through H can be done in
2 cycle per frequency band.

For the complete application, the overall cycle number
required by this part can be approximated with:

 CHX ≈ =128 2 256*

3.5 Overall application benchmarks

The complete speech enhancement application is
performed in 48000 cycles, which represents a CPU load

of only 3 MIPS =

48000

16

cycles

ms
. Therefore, for a 100

MIPS device, the DSP will only be active during 3% of the
frame length.

The following diagram shows the sharing of these cycles
between the main processing blocks:

FFT
23%

iFFT
24%

Kernel
53%

 Figure 3
Cycle sharing between the different blocks

Therefore, from this figure, it could be noticed that the
FFT/IFFT represents about half of the total number of
cycles of the speech enhancement algorithm.

As the speech enhancement application might be executed
on a DSP also performing wireless digital cellular
baseband processing, special care has also been given to
reduce as much as possible the memory consumption.
Program size is less than 3K*16bits. Data RAM
requirement is 1.6K*16bits, shared between scratch RAM
(1K*16bits) and static RAM (0.6K*16bits). Static RAM

T

M u x

S ig n /U n s ig n S ig n /U n s ig n

M P Y 1 7 X 1 7

F r c t / I n t

A D D E R

M u x

M u x

0

" 0 "

D e te c
R o u n d S A T

A B

A L U

E X P

E N C O D E R

B A R R E L

S H IF T E R

[- 1 6 , + 3 1]

S ig n C o n t r o l

E B [1 5 :0]

D B [1 5 : 0]

C B [1 5 : 0]

P B [1 5 :0]

D B [1 5 :0]

C B [1 5 :0]

W r it e S e le c t

1 7

3 4

1 7 1 7

3 2

T R N

1 6

C O M P

C S S
U n i t

T C

M S B / L S B

S ig n C t r l
S ig n
C t r l

blocks must be kept between two consecutive frames. At
the opposite, scratch RAM can be used by other
applications when the speech enhancement algorithm has
completed to process a given frame.

4. PERFORMANCES

The performances of the algorithm DSP implementation
have been measured on a database, recorded in real car
environment with a typical GSM car handsfree
microphone. The software is running on a TMS320C541
DSP, providing 5K*16bits on-chip RAM and 28K*16bits
on-chip ROM.

Figure 4 and Figure 5 show the performance of the
algorithm on a car speech signal recorded with a male
speaker driving at 110 km/h on a highway.

Measurements on these files have shown that the noise
power is reduced by more than 10dB in noise periods, and
that the signal to noise ratio is enhanced by about 9dB in
speech periods. No musical noise can be heard, even when
SNR is very low. Subjective tests with naive listeners have
shown that speech distortion is considered as very small
and not annoying for the conversation.

The adaptation of the algorithm is also very fast. The noise
power is reduced by about 10dB after less than 1s of noise.

It can also be seen on this curves that the overall level of
the speech is very slightly attenuated by the speech
enhancement processing. Precise measurements have
shown that the speech attenuation is less than 1dB.

Because of the FFT block processing, the delay introduced
by the algorithm on the total mobile round-trip delay is
32ms. This delay is fulfilling ETSI specifications on
handsfree processing [4], allowing an maximum additional
delay of 39ms for the whole handsfree processing.

In order to study the influence of the fixed-point arithmetic
precision loss, the performances of the DSP software have
also been compared with the performances of a Matlab
floating point implementation of the same algorithm.
These tests have shown that the performances are very
similar. In particular, the noise power reduction during
noise periods is only differing of 0.5dB between both
implementations. Informal subjective listening tests have
also shown that human hear cannot distinguish between the
Matlab and the DSP implementations.

5. CONCLUSION

In this paper, we have described the implementation of a
speech enhancement algorithm on a TI TMS320C54x
DSP. We have shown how the architecture of this DSP is
well suited for implementing this kind of algorithm in a

very efficient way, minimizing at the same time CPU
loading, memory usage and code size.
We have also detailed the performances of the complete
application, in a car handsfree environment.

Figure 4
Original File

Figure 5
Processed File

6. REFERENCES

[1] Boll, “Suppression of acoustic noise in speech using
spectral subtraction” IEEE Transaction on Acoustic
Speech and Signal Processing, April 1979

[2] R.J. Mac Aulay and M.L.Malpass, “Speech
Enhancement using a soft-decision noise suppression
filter subtraction”, IEEE Transaction on Acoustic
Speech and Signal Processing, April 1980.

[3] “TMS320C54x User’s Guide” - 1996
[4] “ETSI GSM Specification 3.50 Version 5.0.1”, ETSI

TC-SMG, ETS 300 903, November 1996

