MAXIMUM LIKELIHOOD MULTICHANNEL ESTIMATION UNDER REDUCED RANK CONSTRAINT

P. Forster, T. Asté

Laboratoire Electronique et Communication, CNAM, 292 rue St Martin,75141 Paris Cedex 03, France e-mail:forster,aste@cnam.fr

ABSTRACT

This paper deals with the maximum likelihood estimation of the multichannel impulse response in a mobile communication system whose base stations are equipped with antennas arrays. The following problem is solved: using the training sequence, find the maximum likelihood multichannel impulse response from one mobile to the base station under a reduced rank constraint in the presence of gaussian noise and jammers with unknown covariance matrix. Our results find applications in equalization (the reduced rank channel estimate can be used in a Viterbi algorithm), and in the estimation of the directions of arrival (DOA) of the paths from the mobile to the base station. In this last application, a MUSIC like algorithm is developped using the estimated channel subspace.

1. INTRODUCTION

There has been recently an increasing interest for using antennas arrays at base stations in mobile communication systems like GSM. In these systems, estimation of the mobileto-base multichannel impulse response from the training sequence is a preliminary step before equalization. However, when propagation occurs through a limited number of path, this multichannel impulse response exhibits some simple structure: its rank is equal to the number of paths which can be much less than the number of antennas. We develop in this context a maximum likelihood estimation of this reduced rank multichannel impulse response in presence of gaussian noise with unknown covariance matrix. As shown in this paper, a closed-form solution to that problem exists which does not require optimization techniques: this is in contrast with the full modelling problem that is addressed in [1]. Our result finds applications in equalization (the reduced rank channel estimate can be used in a Viterbi algorithm), and in the estimation of the directions of arrival of the paths from the mobile to the base station. In this second application, a MUSIC like algorithm can be developped using the estimated channel subspace: this algorithm is a simple alternative to the complex iterative procedure developped in [1].

This paper is organised as follows. Section 2 formulates the problem, whose solution is given in section 3. In section 5, applications in equalization are presented using the reduced rank channel estimate in a Viterbi equalizer. Finally, an application to the estimation of the paths DOA's is developped in section 6 together with some simulations results.

Due to limited space, the estimation of the number of paths is not treated here.

2. NOTATIONS AND PROBLEM FORMULATION

Consider an array of m sensors that receives the signals emitted by a mobile in a Time Division Multiple Access (TDMA) communication system (e.g. GSM) over a frequency selective channel. These signals are corrupted by noise due to jammers and receivers so that the sampled array output can be written during the l-th communication burst :

$$\mathbf{y}_l(t) = \mathbf{H}_l \, \mathbf{x}_l(t) + \mathbf{e}_l(t) \tag{1}$$

where:

- **H**_l is the $m \times q$ channel impulse response over the *l*-th burst ;
- $\mathbf{x}_l(t) = [x_l(t) \cdots x_l(t-q+1)]^T$ is a vector built from the information bearing signals $x_l(t)$;
- $\mathbf{e}_l(t)$ is the vector of noise at array inputs ;
- t varies from 1 to the burst length N_b ;
- *l* varies from 1 to the number *L* of processed bursts.

The channel maximum length q is assumed to be known: for instance, it corresponds to the duration of 5 symbols in GSM. The channel impulse response H_l varies from one burst to another, but physical considerations and experimental results [2] allow us to assume that propagation from the mobile to the array occurs through a limited number of paths whose directions remain *unchanged* over the processed bursts

This work was supported by France Télécom, CNET, 38-40 rue du $G^a l$ Leclerc, 92131 Issy Les Moulieaux Cedex, France

(as long as their number is not to large). So , by extending the model used in [1] over successive bursts, we can write:

$$\mathbf{H}_l = \mathbf{A} \, \mathbf{B}_l \tag{2}$$

where **A** is the $m \times n$ paths steering vectors matrix, n is the number of paths from the mobile to the array, and **B**_l is an unknown $n \times q$ complex matrix that changes from one burst to another due to the mobile displacement. Therefore, all the columns of **H**_l for $l = 1, \dots, L$ lie in the same *n*dimensional subspace spanned by the columns of **A** and referred to as the *signal-subspace*. Hence, we make the following assumption.

Assumption 1: The $m \times Lq$ matrix formed with channel impulse responses from L successive bursts

$$\mathbf{H} = [\mathbf{H}_1 \cdots \mathbf{H}_L] \tag{3}$$

has rank n, where the number n of paths satisfies n < min(m, Lq).

The next assumption is about noise and is essentially the same as the corresponding one in [1]: again, we implicitly assume that the jammers geometry remains unchanged over the processed bursts.

Assumption 2: Noise $e_l(t)$ is zero-mean, Gaussian, circular, uncorrelated from one time instant to another, with unknown covariance matrix Q.

Assumption 3: The emitted signals $x_l(t)$ are known (e.g. training sequence).

As shown in [1], the Maximum Likelihood Estimation (MLE) of the steering vector matrix **A** is a highly non-linear problem that has no explicit solution : one must resort to complex optimization techniques. It turns out, as demonstrated in the next section, that a much more simple solution can be obtained if we look only for a MLE of the signal subspace without taking into account the steering-vectors structure: in other words, we perform an *unstructured* estimation of the signal subspace. This subspace can then be utilized for estimating the paths DOA's by a MUSIC like scheme. When obtained from the training sequence, the corresponding reduced rank channel impulse responses could also be used for demodulation with a Viterbi algorithm. Now, the addressed problem can be stated as follows.

Problem Formulation: Given L bursts of data, calculate the rank n maximum likelihood estimate of $\mathbf{H} = [\mathbf{H}_1 \cdots \mathbf{H}_L]$ and the noise covariance matrix \mathbf{Q} .

3. PROBLEM SOLUTION

Let us define the following covariance matrices:

$$\widehat{\mathbf{R}}_{xx_l} = N_b^{-1} \sum_{t=1}^{N_b} \mathbf{x}_l(t) \mathbf{x}_l^*(t) , \qquad (4)$$

$$\widehat{\mathbf{R}}_{yy_l} = N_b^{-1} \sum_{t=1}^{N_b} \mathbf{y}_l(t) \mathbf{y}_l^*(t) , \qquad (5)$$

$$\widehat{\mathbf{R}}_{yx_l} = N_b^{-1} \sum_{t=1}^{N_b} \mathbf{y}_l(t) \mathbf{x}_l^*(t) , \qquad (6)$$

$$\widehat{\mathbf{W}} = L^{-1} \sum_{l=1}^{L} (\widehat{\mathbf{R}}_{yy_l} - \widehat{\mathbf{R}}_{yx_l} \, \widehat{\mathbf{R}}_{xx_l}^{-1} \, \widehat{\mathbf{R}}_{yx_l}^*) \,, \quad (7)$$
$$= \widehat{\mathbf{W}}^{1/2} \, \widehat{\mathbf{W}}^{*/2}$$

$$\widetilde{\mathbf{R}} = L^{-1} \, \widehat{\mathbf{W}}^{-1/2} \, \left(\sum_{l=1}^{L} \widehat{\mathbf{R}}_{yx_l} \widehat{\mathbf{R}}_{xx_l}^{-1} \widehat{\mathbf{R}}_{yx_l}^* \right) \, \widehat{\mathbf{W}}^{-*/2} \, . \tag{8}$$

Let Π_s be the projector onto the *n* largest eigenvalues of \mathbf{R} , and $\widehat{\mathbf{\Pi}}_n = \mathbf{I} - \widehat{\mathbf{\Pi}}_s$ the projector onto the m - n smallest eigenvalues. Then, the rank n maximum likelihood estimate $\widehat{\mathbf{H}} = \left[\widehat{\mathbf{H}}_1 \cdots \widehat{\mathbf{H}}_L\right]$ of $\mathbf{H} = [\mathbf{H}_1 \cdots \mathbf{H}_L]$ and the maximum likelihood estimate $\widehat{\mathbf{Q}}$ of \mathbf{Q} are given by:

$$\widehat{\mathbf{H}}_{l} = \widehat{\mathbf{W}}^{1/2} \,\widehat{\mathbf{\Pi}}_{s} \,\widehat{\mathbf{W}}^{-1/2} \,\widehat{\mathbf{R}}_{yx_{l}} \,\widehat{\mathbf{R}}_{xx_{l}}^{-1} \,, \tag{9}$$

$$\widehat{\mathbf{Q}} = \widehat{\mathbf{W}} + \widehat{\mathbf{W}}^{1/2} \,\widehat{\mathbf{\Pi}}_n \,\widehat{\mathbf{R}} \,\widehat{\mathbf{\Pi}}_n \,\widehat{\mathbf{W}}^{*/2} \,. \tag{10}$$

Proof: The solution amounts to maximize the log-likelihood function $\mathcal{L}(\mathbf{A}, \mathbf{B}_1, \dots, \mathbf{B}_L, \mathbf{Q})$ where \mathbf{A} $(m \times n)$, \mathbf{B}_l $(n \times q)$ for $l = 1, \dots, L$ and \mathbf{Q} (hermitian $m \times m$) are globally unknown:

$$\mathcal{L}(\mathbf{A}, \mathbf{B}_1, \cdots, \mathbf{B}_L, \mathbf{Q}) = -m L N_b \log \pi - L N_b \log |\mathbf{Q}| - \sum_{l=1}^{L} \sum_{t=1}^{N_b} (\mathbf{y}_l(t) - \mathbf{A} \mathbf{B}_l \mathbf{x}_l(t))^* \mathbf{Q}^{-1} (\mathbf{y}_l(t) - \mathbf{A} \mathbf{B}_l \mathbf{x}_l(t)) .$$
(11)

Due to limited space, the proof cannot be presented here.

Remark: When *no constraint* is set on the \mathbf{H}_l 's, the maximum likelihood estimates of \mathbf{H}_l and \mathbf{Q} are:

$$\widehat{\mathbf{H}}_{l} = \widehat{\mathbf{R}}_{yx_{l}} \widehat{\mathbf{R}}_{xx_{l}}^{-1}$$
(12)

$$\widehat{\mathbf{Q}} = \widehat{\mathbf{W}}$$
 (13)

Note that $\widehat{\mathbf{R}}_{yx_l} \widehat{\mathbf{R}}_{xx_l}^{-1}$ in (12) is also the MMSE estimate of \mathbf{H}_l obtained by minimizing

$$MSE = \sum_{t=1}^{N_b} \|\mathbf{y}_l(t) - \mathbf{H}_l \, \mathbf{x}_l(t)\|^2$$

with respect to \mathbf{H}_l .

4. INTERPRETATION

We derive in this section some basic statistical properties of the two matrices $\widehat{\mathbf{W}}$ (7) and $\widetilde{\mathbf{R}}$ (8) involved in the previous section. These results are used next to interpret the solution (9).

First, it can be checked that $LN_b \widehat{\mathbf{W}}$ has a complex Wishart distribution with $L(N_b - q)$ degrees of freedom and parameter matrix **Q**. So,

$$E[\widehat{\mathbf{W}}] = \frac{N_b - q}{N_b} \mathbf{Q} \tag{14}$$

which shows that $\widehat{\mathbf{W}}$ is an estimate of the noise covariance matrix (up to a scale factor).

Next, using basic properties of Wishart matrices [4], it can be shown that the mean of $\widetilde{\mathbf{R}}$ (8) is given by:

$$E[\widetilde{\mathbf{R}}] = \alpha \, \mathbf{Q}^{-1/2} \mathbf{A} \, \Sigma \, \mathbf{A}^* \mathbf{Q}^{-*/2} + \beta \, \mathbf{I}$$
(15)

where α and β are given by:

$$\alpha = \frac{L N_b}{L (N_b - q) - m}$$

$$\beta = \frac{L q}{L (N_b - q) - m}$$

$$\Sigma = \frac{1}{L N_b} \sum_{l=1}^{L} \sum_{t=1}^{N_b} \mathbf{B}_l \mathbf{x}_l(t) \mathbf{x}_l(t)^* \mathbf{B}_l^*.$$

Thus, from (15), the signal subspace of $E[\mathbf{\tilde{R}}]$ is spanned by the columns of the whitened steering vectors matrix $\mathbf{Q}^{-1/2}\mathbf{A}$. Therefore, the projector $\widehat{\mathbf{\Pi}}_s$ onto the *n* largest eigenvalues of $\mathbf{\tilde{R}}$ is an estimate of the projector onto the columns of $\mathbf{Q}^{-1/2}\mathbf{A}$.

Turning our attention to the channel impulse response estimate $\hat{\mathbf{H}}_l$, we observe that the computation of $\hat{\mathbf{H}}_l$ in (9) can be interpreted as follows:

- whiten the MMSE estimate (12) (multiplication by $\widehat{\mathbf{W}}^{-1/2}$ in (9));
- project it onto the estimated signal subspace (multiplication by Π̂_s);
- cancel the whitening (multiplication by $\widehat{\mathbf{W}}^{1/2}$).

5. APPLICATION TO MLSE

Maximum Likelihood Sequence Estimation (MLSE) requires both the channel impulse response and the noise covariance: our maximum likelihood estimates of channel and noise can be used for that purpose. In most mobile communication systems, a training sequence is available: we assume that this is the case in this paragraph. For simplicity and coherence with preceding sections, the *last bust* of received data is numbered L, and the L - 1 previous ones are numbered from 1 to L - 1. Using the training sequences of the L - 1 previous bursts, and the one of the present burst, one can compute the MLE of the current burst impulse response $\hat{\mathbf{H}}_L$ (9) and the noise covariance matrix $\hat{\mathbf{Q}}$ (10).

In the sequel, primes will be used to distinguish information bearing data from training sequence data. Let $x'_L(1)$, \dots , $x'_L(N'_b)$ be the N'_b unknown symbols of the last burst, and set $\mathbf{x}'_L(t) = [x'_L(t) \cdots x'_L(t-q+1)]^T$. Denote by $\mathbf{y}'_L(t)$ the array output data. Then, using our MLE $\hat{\mathbf{H}}_L$ and $\hat{\mathbf{Q}}$, the MLSE is obtained by minimizing the following function with respect to the unknown symbols:

$$f_{\widehat{\mathbf{Q}}}(x'_{L}(1) \cdots x'_{L}(N'_{b})) =$$

$$\sum_{t=1}^{N'_{b}} (\mathbf{y}'_{L}(t) - \widehat{\mathbf{H}}_{L} \mathbf{x}'_{L}(t))^{*} \widehat{\mathbf{Q}}^{-1} (\mathbf{y}'_{L}(t) - \widehat{\mathbf{H}}_{L} \mathbf{x}'_{L}(t)) .$$
(16)

An equivalent criterion $f_{\widehat{\mathbf{W}}}(x'_L(1) \cdots x'_L(N'_b))$ is obtained if one replaces in expression (16) above $\widehat{\mathbf{Q}}$ (10) by $\widehat{\mathbf{W}}$ (7). Indeed, the inverse of $\widehat{\mathbf{Q}}$ (10) can be written:

$$\widehat{\mathbf{Q}}^{-1} = \widehat{\mathbf{W}}^{-1} - \widehat{\mathbf{W}}^{-*/2} \widehat{\mathbf{\Pi}}_n \left(\mathbf{W} + \widetilde{\mathbf{R}}^{-1}\right)^{-1} \widehat{\mathbf{\Pi}}_n \widehat{\mathbf{W}}^{-1/2} ,$$

which yields , noting that $\widehat{\mathbf{\Pi}}_n \, \widehat{\mathbf{W}}^{-1/2} \, \widehat{\mathbf{H}}_L = 0$:

$$\begin{aligned} f_{\widehat{\mathbf{Q}}}(x'_{L}(1)\cdots x'_{L}(N'_{b})) &= f_{\widehat{\mathbf{W}}}(x'_{L}(1)\cdots x'_{L}(N'_{b})) + \\ \sum_{t=1}^{N'_{b}} \mathbf{y}'_{L}(t)^{*} \, \widehat{\mathbf{W}}^{-*/2} \, \widehat{\mathbf{\Pi}}_{n} \, (\mathbf{W} + \widetilde{\mathbf{R}}^{-1})^{-1} \, \widehat{\mathbf{\Pi}}_{n} \, \widehat{\mathbf{W}}^{-1/2} \, \mathbf{y}'_{L}(t) \, . \end{aligned}$$

Since in the above equation the second term of the right hand side does not depend on the emitted symbols, minimizing $f_{\widehat{\mathbf{W}}}$ and $f_{\widehat{\mathbf{O}}}$ are clearly equivalent.

The next simulation illustrates this approach. The array is circular, with radius $R = 0.7 \lambda$ where λ is the wave-length, and it consists of m = 10 equi-spaced sensors. The channel impulse response has length q = 5. There are n = 2 signal paths in (2) with DOA's 0° and 30° . The signal to noise ratio (excluding jammers) is $E_b/N_0 = -2$ dB. Three jammers are present with DOA's -50° , -30° and 60° and equal power: the jammer to signal ratio is 7 dB. Each burst consists of $N'_b = 150$ information symbols $\{+1,-1\}$ and a training sequence of $N_b = 26$ symbols. The maximum likelihood estimates are obtained by processing the training schemes are compared: the MLSE using exact channel \mathbf{H}_L and noise covariance \mathbf{Q} , the MLSE using the unconstrained MLE channel estimate (12) and noise covariance $\mathbf{\widehat{W}}$ (7),

and the MLSE using the rank constrained MLE channel estimate (9) and noise covariance $\widehat{\mathbf{W}}$ (7). Bit Error Rates (BER) are displayed in the next table. The BER using the rank constrained MLE is *three times* smaller than the BER using the unconstrained MLE.

	known	unconstrained	rank constrained
	channel	MLE channel	MLE channel
BER	1.28 %	7.44 %	2.65 %

6. APPLICATION TO PATHS DOA ESTIMATION

In some applications for mobile communication systems, the paths DOA have to be determined. This is the case for instance when one tries to design a beamformer for downlink communication based on up-link data in Frequency-Division Duplex systems such as GSM [3]. The results of section 3 can be used to that purpose as discussed now.

We have shown in section 3 that

$$\widehat{\mathbf{H}}_{l} = \widehat{\mathbf{W}}^{1/2} \,\widehat{\mathbf{\Pi}}_{s} \,\widehat{\mathbf{W}}^{-1/2} \,\widehat{\mathbf{R}}_{yx_{l}} \,\widehat{\mathbf{R}}_{xx_{l}}^{-1} \tag{17}$$

is the maximum likelihood estimate of $\mathbf{H}_l = \mathbf{A} \mathbf{B}_l$. By writing

$$\mathbf{H}_{l} = \widehat{\mathbf{W}}^{1/2} \, \widehat{\mathbf{W}}^{-/2} \, \mathbf{A} \, \mathbf{B}_{l} \tag{18}$$

and comparing equations (17) and (18), we deduce that projector $\widehat{\Pi}_s$ is an estimate of the projector onto the columns of $\widehat{\mathbf{W}}^{-/2} \mathbf{A}$. Consequently, the steering vector $\mathbf{a}(\theta)$ of a path with DOA θ satisfies $\widehat{\Pi}_n \widehat{\mathbf{W}}^{-1/2} \mathbf{a}(\theta) \approx 0$ where $\widehat{\Pi}_n = \mathbf{I} - \widehat{\Pi}_s$. Thus, following the MUSIC scheme, the paths DOA can be estimated by looking for the maxima of the function $h(\theta)$ defined by :

$$h(\theta) = \frac{\mathbf{a}(\theta)^* \,\widehat{\mathbf{W}}^{-1} \,\mathbf{a}(\theta)}{\mathbf{a}(\theta)^* \,\widehat{\mathbf{W}}^{-*/2} \,\widehat{\mathbf{\Pi}}_n \,\widehat{\mathbf{W}}^{-1/2} \mathbf{a}(\theta)} \,. \tag{19}$$

The following simulation illustrates this approach. The array is circular, with radius $R = 0.7\lambda$ where λ is the wavelength, and consists of m = 10 equi-spaced sensors: the 3-dB beamwidth is $2 \theta_3 = 30^{\circ}$.

The channel impulse response has length q = 5. The training sequence consists of 26 symbols (+1 or -1), and $N_b = 26 - q + 1 = 22$ data are processed at each burst. There are n = 2 signal paths in (2) with DOA's $\theta_1 = 10^{\circ}$ and $\theta_2 = 20^{\circ}$. The number of processed burst is L = 100 which corresponds to about 0.5s for GSM. Matrices \mathbf{B}_l , $l = 1, \dots, L$ in (2) are independent from one burst to another, and their elements are complex gaussian distributed with zero mean and variance one. Their are three gaussian jammers with DOA's 30° , 340° and 350° and power 2.5 each. Uncoherent backgound noise power is also 2.5. Note that there are three sources $(10^{\circ}, 20^{\circ} \text{ and } 30^{\circ})$ within a beamwidth and one of them is a jammer (30°) . Figure

1 displays the paths DOA's estimates obtained from 50 independent trials: the 2 paths are detected, and jammers are rejected.

Figure 1: Paths DOA's estimates.

7. CONCLUSION

We have developped a maximum likelihood estimator of the multichannel impulse response under a reduced rank constraint. This estimator finds applications in equalization and channel analysis (paths DOA estimation). When used in a Viterbi equalizer, the new channel estimate yields better performances compared to the MMSE channel estimate.

8. REFERENCES

- M. Viberg, P. Stoica, and B. Ottersten. Maximum Likelihood Array Processing in Spatially Correlated Noise Fields Using Parameterized Signals. *IEEE Trans. Signal Processing*, 45(4):996–1004, April 1997.
- [2] J.P. Rossi, J.P. Barbot, and A.J. Levy. Theory and Measurement of the Angle of Arrival and Time Delay of UHF Radiowaves Using a Ring Array. *IEEE Trans. Signal Processing*, 45(5):876–884, May 1997.
- [3] P. Zetterberg and B. Ottersten. The Spectrum Efficiency of a Base-Station Antenna Array System for Spatially Selective Transmission. *IEEE Trans. on Vehicular Technology*, 44(3):651–660, 1995.
- [4] D. Maiwald and D. Kraus. On Moments of Complex Wishart and Complex Inverse Wishart Distributed Matrices. in *Proc. ICASSP 97*, Munich, Germany, 1997, pp. 3817–3820.