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ABSTRACT
This paper deals with the maximum likelihood estimation
of the multichannel impulse response in a mobile commu-
nication system whose base stations are equipped with an-
tennas arrays. The following problem is solved: using the
training sequence, find the maximum likelihood multichan-
nel impulse response from one mobile to the base station
under a reduced rank constraint in the presence of gaussian
noise and jammers with unknown covariance matrix. Our
results find applications in equalization (the reduced rank
channel estimate can be used in a Viterbi algorithm), and in
the estimation of the directions of arrival (DOA) of the paths
from the mobile to the base station. In this last application,
a MUSIC like algorithm is developped using the estimated
channel subspace.

1. INTRODUCTION

There has been recently an increasing interest for using an-
tennas arrays at base stations in mobile communication sys-
tems like GSM. In these systems, estimation of the mobile-
to-base multichannel impulse response from the training se-
quence is a preliminary step before equalization. However,
when propagation occurs through a limited number of path,
this multichannel impulse response exhibits some simple
structure: its rank is equal to the number of paths which
can be much less than the number of antennas. We develop
in this context a maximum likelihood estimation of this re-
duced rank multichannel impulse response in presence of
gaussian noisewith unknown covariance matrix. As shown
in this paper, a closed-form solution to that problem exists
which does not require optimization techniques: this is in
contrast with the full modelling problem that is addressed
in [1]. Our result finds applications in equalization (the re-
duced rank channel estimate can be used in a Viterbi al-
gorithm), and in the estimation of the directions of arrival
of the paths from the mobile to the base station. In this
second application, a MUSIC like algorithm can be devel-
opped using the estimated channel subspace: this algorithm
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is a simple alternative to the complex iterative procedure
developped in [1].

This paper is organised as follows. Section 2 formulates
the problem, whose solution is given in section 3. In sec-
tion 5, applications in equalization are presented using the
reduced rank channel estimate in a Viterbi equalizer. Fi-
nally, an application to the estimation of the paths DOA’s
is developped in section 6 together with some simulations
results.

Due to limited space, the estimation of the number of
paths is not treated here.

2. NOTATIONS AND PROBLEM FORMULATION

Consider an array ofm sensors that receives the signals
emitted by a mobile in a Time Division Multiple Access
(TDMA) communication system (e.g. GSM) over a fre-
quency selective channel. These signals are corrupted by
noise due to jammers and receivers so that the sampled array
output can be written during thel-th communication burst :

yl(t) = Hl xl(t) + el(t) (1)

where:

� Hl is them � q channel impulse response over the
l-th burst ;

� xl(t) = [xl(t) � � � xl(t� q + 1)]T is a vector built
from the information bearing signalsxl(t) ;

� el(t) is the vector of noise at array inputs ;

� t varies from1 to the burst lengthNb ;

� l varies from1 to the numberL of processed bursts.

The channel maximum lengthq is assumed to be known:
for instance, it corresponds to the duration of 5 symbols in
GSM. The channel impulse responseHl varies from one
burst to another, but physical considerations and experimen-
tal results [2] allow us to assume that propagation from the
mobile to the array occurs through a limited number of paths
whose directions remainunchangedover the processed bursts



(as long as their number is not to large). So , by extending
the model used in [1] over successive bursts, we can write:

Hl = ABl (2)

whereA is them � n paths steering vectors matrix,n is
the number of paths from the mobile to the array, andBl is
an unknownn � q complex matrix that changes from one
burst to another due to the mobile displacement. Therefore,
all the columns ofHl for l = 1; � � � ; L lie in the samen-
dimensional subspace spanned by the columns ofA and re-
ferred to as thesignal-subspace. Hence, we make the fol-
lowing assumption.

Assumption 1:Them � Lq matrix formed with channel
impulse responses from L successive bursts

H = [H1 � � �HL] (3)

has rankn, where the numbern of paths satisfiesn <
min(m;L q).

The next assumption is about noise and is essentially the
same as the corresponding one in [1]: again, we implicitly
assume that the jammers geometry remains unchanged over
the processed bursts.

Assumption 2:Noiseel(t) is zero-mean, Gaussian, circu-
lar, uncorrelated from one time instant to another, with un-
known covariance matrixQ.

Assumption 3:The emitted signalsxl(t) are known (e.g.
training sequence).

As shown in [1], the Maximum Likelihood Estimation (MLE)
of the steering vector matrixA is a highly non-linear prob-
lem that has no explicit solution : one must resort to com-
plex optimization techniques. It turns out, as demonstrated
in the next section, that a much more simple solution can be
obtained if we look only for a MLE of the signal subspace
without taking into account the steering-vectors structure:
in other words, we perform anunstructuredestimation of
the signal subspace. This subspace can then be utilized for
estimating the paths DOA’s by a MUSIC like scheme. When
obtained from the training sequence, the corresponding re-
duced rank channel impulse responses could also be used
for demodulation with a Viterbi algorithm. Now, the ad-
dressed problem can be stated as follows.

Problem Formulation:Given L bursts of data, calculate the
rank n maximum likelihood estimate ofH = [H1 � � �HL]
and the noise covariance matrixQ.

3. PROBLEM SOLUTION

Let us define the following covariance matrices:
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b
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Let b�s be the projector onto then largest eigenvalues ofeR,
and b�n = I � b�s the projector onto them � n smallest
eigenvalues. Then, the rank n maximum likelihood estimatebH =

h bH1 � � � bHL

i
of H = [H1 � � �HL] and the maximum

likelihood estimatebQ ofQ are given by:bHl = cW1=2 b�s
cW�1=2 bRyx

l

bR�1

xxl
; (9)bQ = cW + cW1=2 b�n

eR b�n
cW�=2 : (10)

Proof: The solution amounts to maximize the log-likelihood
functionL(A;B1; � � � ;BL;Q) whereA (m�n),Bl (n�q)
for l = 1; � � � ; L andQ (hermitianm � m) are globally
unknown:

L(A;B1; � � � ;BL;Q) = �mLNb log� � LNb logjQj �
LX
l=1

NbX
t=1

(yl(t)�ABl xl(t))
�Q�1 (yl(t)�ABl xl(t)) : (11)

Due to limited space, the proof cannot be presented here.

Remark:Whenno constraintis set on theHl’s, the max-
imum likelihood estimates ofHl andQ are:bHl = bRyx

l

bR�1

xxl (12)bQ = cW (13)

Note thatbRyx
l

bR�1

xxl in (12) is also the MMSE estimate of
Hl obtained by minimizing

MSE =

NbX
t=1

kyl(t)�Hl xl(t)k
2

with respect toHl.



4. INTERPRETATION

We derive in this section some basic statistical properties
of the two matricescW (7) and eR (8) involved in the pre-
vious section. These results are used next to interpret the
solution (9).

First, it can be checked thatLNb
cW has a complex Wishart

distribution withL (Nb�q) degrees of freedom and param-
eter matrixQ. So,

E[cW] =
Nb � q

Nb
Q (14)

which shows thatcW is an estimate of the noise covariance
matrix (up to a scale factor).

Next, using basic properties of Wishart matrices [4], it can
be shown that the mean ofeR (8) is given by:

E[eR] = �Q�1=2A�A�Q��=2 + � I (15)

where� and� are given by:

� =
LNb

L (Nb � q)�m

� =
Lq

L (Nb � q)�m

� =
1

LNb

LX
l=1

NbX
t=1

Bl xl(t)xl(t)
�B�

l :

Thus, from (15), the signal subspace ofE[eR] is spanned by
the columns of the whitened steering vectors matrixQ�1=2A.
Therefore, the projectorb�s onto then largest eigenvalues
of eR is an estimate of the projector onto the columns of
Q�1=2A.

Turning our attention to the channel impulse response es-
timatebHl, we observe that the computation ofbHl in (9) can
be interpreted as follows:

� whiten the MMSE estimate (12) (multiplication bycW�1=2 in (9)) ;

� project it onto the estimated signal subspace (multi-
plication by b�s);

� cancel the whitening (multiplication bycW1=2).

5. APPLICATION TO MLSE

Maximum Likelihood Sequence Estimation (MLSE) re-
quires both the channel impulse response and the noise co-
variance: our maximum likelihood estimates of channel and

noise can be used for that purpose. In most mobile commu-
nication systems, a training sequence is available: we as-
sume that this is the case in this paragraph. For simplicity
and coherence with preceding sections, thelast bustof re-
ceived data is numberedL, and theL� 1 previous ones are
numbered from1 toL� 1. Using the training sequences of
theL� 1 previous bursts, and the one of the present burst,
one can compute the MLE of the current burst impulse re-
sponsebHL (9) and the noise covariance matrixbQ (10).

In the sequel, primes will be used to distinguish informa-
tion bearing data from training sequence data. Letx0L(1);
� � � ; x0L(N

0

b) be theN 0

b unknown symbols of the last burst,
and setx0L(t) = [x0L(t) � � � x

0

L(t� q + 1)]
T . Denote by

y0L(t) the array output data. Then, using our MLEbHL andbQ, the MLSE is obtained by minimizing the following func-
tion with respect to the unknown symbols:

fbQ(x0L(1) � � � x0L(N 0

b)) = (16)

N 0

bX
t=1

(y0L(t)�
bHL x

0

L(t))
� bQ�1 (y0L(t)�

bHL x
0

L(t)) :

An equivalent criterionf bW(x0L(1) � � � x
0

L(N
0

b)) is obtained

if one replaces in expression (16) abovebQ (10) bycW (7).
Indeed, the inverse ofbQ (10) can be written:

bQ�1 = cW�1 � cW��=2 b�n (W + eR�1)�1 b�n
cW�1=2 ;

which yields , noting thatb�n
cW�1=2 bHL = 0 :

fbQ(x0L(1) � � � x0L(N 0

b)) = f bW(x0L(1) � � � x
0

L(N
0

b))+PN 0

b

t=1 y
0

L(t)
� cW��=2 b�n (W + eR�1)�1 b�n

cW�1=2 y0L(t) :

Since in the above equation the second term of the right
hand side does not depend on the emitted symbols, mini-
mizingf bW andfbQ are clearly equivalent.

The next simulation illustrates this approach. The array is
circular, with radiusR = 0:7� where� is the wave-length,
and it consists ofm = 10 equi-spaced sensors. The chan-
nel impulse response has lengthq = 5. There aren = 2
signal paths in (2) with DOA’s0� and30�. The signal to
noise ratio (excluding jammers) isEb=N0 = �2 dB. Three
jammers are present with DOA’s�50�, �30� and60� and
equal power: the jammer to signal ratio is7 dB. Each burst
consists ofN 0

b = 150 information symbolsf+1,-1g and a
training sequence ofNb = 26 symbols. The maximum
likelihood estimates are obtained by processing the train-
ing sequences ofL = 100 bursts. Three demodulation
schemes are compared: the MLSE using exact channelHL

and noise covarianceQ, the MLSE using the unconstrained
MLE channel estimate (12) and noise covariancecW (7),



and the MLSE using the rank constrained MLE channel
estimate (9) and noise covariancecW (7). Bit Error Rates
(BER) are displayed in the next table. The BER using the
rank constrained MLE isthree timessmaller than the BER
using the unconstrained MLE.

known unconstrained rank constrained
channel MLE channel MLE channel

BER 1.28 % 7.44 % 2.65 %

6. APPLICATION TO PATHS DOA ESTIMATION

In some applications for mobile communication systems,
the paths DOA have to be determined. This is the case for
instance when one tries to design a beamformer for down-
link communication based on up-link data in Frequency-
Division Duplex systems such as GSM [3]. The results of
section 3 can be used to that purpose as discussed now.

We have shown in section 3 that

bHl = cW1=2 b�s
cW�1=2 bRyx

l

bR�1

xxl (17)

is the maximum likelihood estimate ofHl = ABl. By
writing

Hl = cW1=2 cW�=2ABl (18)

and comparing equations (17) and (18), we deduce that pro-
jector b�s is an estimate of the projector onto the columns ofcW�=2A. Consequently, the steering vectora(�) of a path
with DOA � satisfiesb�n

cW�1=2a(�) � 0 where b�n =

I � b�s . Thus, following the MUSIC scheme, the paths
DOA can be estimated by looking for the maxima of the
functionh(�) defined by :

h(�) =
a(�)� cW�1 a(�)

a(�)� cW��=2 b�n
cW�1=2a(�)

: (19)

The following simulation illustrates this approach. The ar-
ray is circular, with radiusR = 0:7� where� is the wave-
length, and consists ofm = 10 equi-spaced sensors: the
3-dB beamwidth is2 �3 = 30�.

The channel impulse response has lengthq = 5. The
training sequence consists of 26 symbols (+1 or -1), and
Nb = 26 � q + 1 = 22 data are processed at each burst.
There aren = 2 signal paths in (2) with DOA’s�1 = 10�

and �2 = 20�. The number of processed burst isL =
100 which corresponds to about 0.5s for GSM. Matrices
Bl; l = 1; � � � ; L in (2) are independent from one burst to
another, and their elements are complex gaussian distributed
with zero mean and variance one. Their are three gaus-
sian jammers with DOA’s30�, 340� and350� and power
2.5 each. Uncoherent backgound noise power is also 2.5.
Note that there are three sources (10�, 20� and30�) within
a beamwidth and one of them is a jammer (30�). Figure

1 displays the paths DOA’s estimates obtained from 50 in-
dependent trials: the 2 paths are detected, and jammers are
rejected.
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Figure 1: Paths DOA’s estimates.

7. CONCLUSION

We have developped a maximum likelihood estimator of
the multichannel impulse response under a reduced rank
constraint. This estimator finds applications in equalization
and channel analysis (paths DOA estimation). When used
in a Viterbi equalizer, the new channel estimate yields better
performances compared to the MMSE channel estimate.
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