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ABSTRACT

A least-square infinite series approximation (L-SISA)
technique is proposed for modeling amplitude modulated (AM)
sinusoidal components of naturally occurring signals, such as
those produced by traditional musical instruments. Each AM
sinusoid is iteratively extracted using an analysis-by-synthesis
technique and the problem of parameter estimation is linearised
for least-square approximation through a systematic search in
the frequency vector space. Some timbre analysis results
obtained using the AM sinusoidal model are presented.

1. INTRODUCTION

Sinusoidal models have often been used to describe signals,
especially musical signals [1],[2]. In previous works, the
sinusoids are modeled using constant amplitude sine functions
with subsequent modification to their amplitude envelopes
through a separate analysis. In [1], the amplitude envelope of
each sinusoid is assumed to be piecewise linear and is
interpolated from one frame to another. In [2], a global
amplitude envelope σ(n) is obtained by low-pass filtering the
signal and is shared by all sinusoidal components within the
analysis frame. However, timbre analysis of instruments such
as the trumpet and clarinet have revealed that no two partials
have amplitude envelopes of the same shape [3]. This paper
describes a sinusoidal model which incorporates a parametric
description of the sinusoid’s amplitude envelope based on an
infinite series approximation. Under noisy conditions, it is
shown that the proposed least-square approach is able to
extract the amplitude envelope of the sinusoids more accurately
than other demodulation techniques such as the energy
operator approach [4].

2.  L-SISA AM SINUSOIDAL MODEL

A discrete-time signal x(n) consisting of R mono-tone AM
sinusoids is represented by
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where wi and θi are the carrier angular frequency and its
corresponding phase, respectively. The amplitude envelope
Ai(n) of the ith sinusoid may take the form of an exponentially
damped AM signal given by
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where the value b (always positive) determines the rate of
decay and wm is the modulating angular frequency. In the case
of Chowning's digital FM synthesis [3] which utilizes signals

such as y(n) = sin[wcn + Isin(wmn)], the amplitude envelope
Ai(n) of the ith sinusoid could describe one of several harmonic
or non-harmonic components (depending of the ratio wc/wm)
which could be described, for example by

[ ]A n J I J I w ni c( ) ( ) ( ) sin( )= −0 2
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where J0(I) and J2(I) are the zeroth-order and second-order
Bessel functions, respectively. The modulation index I, can be
used to control the type of timbre being synthesized [3]. More
complex AM signal can also be described by any linear
combination of eqns. (2) and (3). It can be observed that most
naturally occurring envelope functions such as the sinusoidal,
exponential and Bessel functions can be expressed as an
infinite power series as shown in Table 1.

Function Infinite series
sin x x x x x− + − + −3 5 73 5 7! ! ! ...
cos x 1 2 4 62 4 6− + − + −x x x! ! ! ...

ex
1 2 32 3+ + + +x x x! ! ...

J0 x 1 2 1 2 22 2 2 4 4 2− + − +x x( !) ( !) ..

Table 1 -  The infinite power series of some common functions

Based on this observation, we can express the amplitude
envelope Ai(n) as a general truncated power series of order P
given by
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where uk are the unknown amplitude coefficients associated
with each respective kth power of n. The accuracy of this
model depends on several factors such as the order of the
model P and the size of the modulating frequencies in the
signal being analyzed. The higher the order P, the more
accurately the model is able to track high modulating
frequencies (see Fig. 3(c)). However, the order P cannot be
made arbitrarily large due to computational and numerical
stability considerations.
Using the trigonometric identity cos(α + β)= cosα cosβ - sinα
sinβ, eqn. (1) and eqn. (4), we can express the ith AM sinusoid
in the form:
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The phase components cos(θi) and sin(θi) of the ith carrier
frequency (wi) are assumed constant over the duration of
analysis and are embedded in the (P+1) pairs of coefficients aik

and bik, respectively. If the order P is set to zero, eqn. (5)



describes a  constant amplitude sinusoid similar to those used
in [2] and [5]. However, unlike [2] which uses a global
amplitude envelope sequence σ(n), the model proposed here
provides a unique amplitude envelope for each sinusoid found
in the signal x(n). The amplitude envelope of ~ ( )x ni

 is given by
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2.1. Model parameter estimation

Given a signal segment x(n) of length N samples, the ith AM
sinusoid can be extracted by minimizing eqn. (7) with respect
to the (P+1) pairs of amplitude coefficients (aik, bik), and the
carrier frequency (wi).
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Unfortunately, eqn. (7) is non-linear and is difficult to solve in
a closed-form manner without some a priori knowledge of the
signal in question. As in [2] and [5], we systematically fix the
value of the carrier frequency (wi) and minimize the squared
sequential error norm εi in eqn. (7) in terms of the  (P+1)
amplitude coefficient pairs (aik, bik). For a given value of w, the
(P+1) normal equations are given by
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The set of linear simultaneous equations in eqn. (8) can be re-
written in matrix form

Au = B (9)

where A, is a square coefficient matrix of size 2(P+1) by
2(P+1)  and B is a column matrix of size 2(P+1). The solution
vector u, containing the 2(P+1) unknown parameters, can be
obtained by computing the inverse of matrix A as shown in
eqn. (10) or as in our case, through a more well-conditioned
Gaussian elimination algorithm.

u = A-1B (10)

2.2. Estimating the carrier frequencies

Let εi(w) be the value of εi obtained at some fixed value of w
when the amplitude coefficients estimated in eqn. (10) are
substituted into eqn. (7). A systematic substitution of discrete
step values of w from 0 to π will yield a function εi(w) which
exhibits troughs at frequencies where dominant AM sinusoid
exist (see Fig. 1). A step width ∆w  of 2π/N (where N is the
length of the signal segment) will give a frequency resolution
equal to the bin width for a FFT of length N [5]. Smaller values
of  ∆w  will give more accurate frequency estimate at the
expense of  higher computational requirements. In our

implementation, a step size ∆w  of 2π/3N was used for coarse
search and a finer step size of half the initial value was used for
more accurate location of the carrier frequencies once the
lowest trough has been located.

The solution to vector u using Gaussian elimination requires
approximately (2P+2)3 multiplications [6], where P is the order
of the truncated infinite series approximation of the amplitude
envelope. It would be computationally costly to systematically
search through discrete values of w using a high-order model
(e.g. P=20). Our strategy is to detect the lowest trough in εi(w)
using a simple zeroth-order model. Unfortunatately, at (P=0),
εi(w) is representative of the spectral plot of x(n) and  this gives
rise to the problem of a missing carrier, as can be seen in Fig.
1(a). It is well-known that the spectral energy of an AM signal
is at its sidebands and not at the carrier frequency. As a result,
the frequency we where the lowest  trough is located is not the
carrier wi but is some frequency close to it. If we assume the
maximum modulating frequency is some value wM, we can then
execute a more efficient search within a smaller vicinity of ±
wM about we using a model with the intended Pth-order, as this
is more representative of the actual AM sinusoid at wi. Fig.
1(b) shows how a 20th-order model is able to yield a correct
estimate of the carrier frequency at the bottom of the trough.
For applications such as timbre analysis, we found setting wM

to π/100 seems adequate.
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Fig. 1 - (a) Plot of a selected segment of  εi(w) obtained for the
test signal x(n) in Fig. 2 using a zeroth-order L-SISA model.
(b) Plot of ε i(w) using a 20th-order L-SISA model.

Each of the R AM sinusoids is extracted iteratively using an
analysis-by-synthesis technique [2]. Consequently, the ith AM
sinusoid is obtained not from the original signal segment x(n)
but from xi(n) which is given by

x n x n x ni i i( ) ( ) ~ ( )= −− −1 1
(11)

P = 20

P = 0

carrier frequency



where ~ ( )x ni −1
 is the AM sinusoid estimated in the previous (i-

1)th iteration. In this case, x0(n) is the original signal segment
x(n) and ~ ( )x n0

is an initial null estimate. The iterative

extraction of AM sinusoids can be terminated when a
predetermined number of partials have been extracted or when
no more significant troughs can be found in the error function
εi(w) for all  values of w. The remaining residual signal xi(n) at
this stage consist mainly of the stochastic portion of signal
x(n), and it cannot be efficiently described by sinusoidal
models [1].

3.  RESULTS AND DISCUSSION

3.1. Noisy test signal

Signals x(n) containing a single exponentially damped AM
sinusoid with a SNR of 10dB (see Fig. 2) and 0dB were used
to test the accuracy of the L-SISA model.
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Fig. 2 - Test signal x(n) = [e-0.005 n cos(0.01πn)]cos(0.2πn) with
a SNR of 10dB.

Fig. 3(a) shows the amplitude envelope extracted from the test
signal x(n) using the proposed L-SISA model and Fig. 3(b)
shows the result of using the computationally more efficient
smoothed energy operator separation algorithm (SEOSA) [4].
These results confirm that a parametric least-square approach
which combines information over the entire analysis frame is
more robust to noise than the energy operator which rely on
local derivative operations. Moreover, in signals containing
multiple sinusoidal components, the SEOSA approach require
a separate process for carrier detection and bandpass filtering.

Fig. 3(c) shows that an appropriate order of L-SISA model
must be selected to represent the AM sinusoid. A low-order
model such as (P=10) is inadequate to describe the amplitude
envelop of the signal x(n) in Fig. 2. A higher-order model such
as (P=30) should also be avoided as it provides marginal
improvements in accuracy for a significant increase in
computational cost. For a modulation angular frequency of
π/100, a model of order (P=20) would be optimal.

Estimation with the L-SISA model produces noticeable errors
at both ends of the analysis frame. This is to be expected, since
the accuracy of least-square data modeling of differentiable
functions at a given locality depends on the availability of
sufficient neighboring support at either side. If required, such
errors can be reduced by  applying a suitable centre-weighted
window with overlap-add synthesis, similar  to [2]. However,

for convenience, all results presented in this paper have been
restricted to single frame analysis.
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Fig. 3 - Plot of the actual amplitude envelope (dashed line)
against (a) that obtained using the L-SISA model for a SNR of
10dB and 0dB, with (P=20); (b) that obtained with the SEOSA
energy operator [4]. (c) The amplitude envelopes obtained with
L-SISA models of different orders, at a SNR of 10dB.

3.2. Musical Timbre Analysis

The L-SISA AM sinusoidal model was used to analyze the
amplitude envelope progression of partials in musical sounds.
Fig. 4(a) shows the waveform of a brass-like tone obtained
synthetically through Chowning's single-carrier FM synthesis
technique. Fig. 4(b) plots 8 extracted harmonics and its
amplitude evolution with time. Notice the fundamental rises
first, followed by the higher harmonics. This is characteristic of
brassy sounds [3]. The result of analysis performed on a
digitized trumpet note in Fig. 5 is shown in Fig. 6. Notice the
general similarity except for a shift in the peak sustain spectral
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energy from  the fundamental in the synthetic note to the 4th
harmonic in the digitized note.
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Fig. 4 - (a) 300 samples of a synthetic trumpet-like note and the
global amplitude envelope and modulation index function used
for its creation [3]. (b) Amplitude-time evolution plot of 8
harmonics extracted using a L-SISA model of (P=20).
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Fig. 5 -  The 2nd trumpet note from Louis Armstrong’s ‘Mack the
Knife’ soundtrack, digitized from a CD recording at a sampling
rate of 11025 Hz and 16-bit sample size. Waveform shown
below is  reconstructed using the 11 extracted partials.
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Fig. 6 - Amplitude-time evolution plot of 11 partials extracted
with L-SISA model of (P=20) from the digitized trumpet note.

4. SUMMARY AND FUTURE WORK

An infinite series approximation technique for modeling
AM sinusoids is proposed. We have shown how the L-
SISA AM sinusoidal models are robustly extracted using
a least-square approach and how they can parametrically
model the dynamic behavior of  partials in musical tones.
We are currently working on the difficult task of
estimating the global frequency modulation law of FM
synthesized timbre by analyzing the amplitude
coefficients of all the extracted partial.
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